Effect of Magnetic Field on Thermal Conductivity of Nitrogen-Doped Diamond

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The measurement of the thermal conductivity κ(T) of a single crystal of nitrogen-doped diamond in the temperature range from 6 to 92 K in a magnetic field of 14 T is reported. A weak effect of the magnetic field on κ(T) at low temperatures is found. The process of phonon scattering on bound charge carriers of an impurity under conditions of strong Zeeman splitting is discussed.

Sobre autores

A. Inyushkin

National Research Center Kurchatov Institute

Autor responsável pela correspondência
Email: inyushkin_av@nrcki.ru
Rússia, Moscow

V. Ralchenko

Prokhorov Institute of General Physics of the Russian Academy of Sciences

Email: vg_ralchenko@mail.ru
Rússia, Moscow

A. Bolshakov

Prokhorov Institute of General Physics of the Russian Academy of Sciences

Email: inyushkin_av@nrcki.ru
Rússia, Moscow

A. Taldenkov

National Research Center Kurchatov Institute

Email: inyushkin_av@nrcki.ru
Rússia, Moscow

D. Chernodubov

National Research Center Kurchatov Institute

Email: inyushkin_av@nrcki.ru
Rússia, Moscow

V. Konov

Prokhorov Institute of General Physics of the Russian Academy of Sciences

Email: inyushkin_av@nrcki.ru

Academician of the RAS

Rússia, Moscow

Bibliografia

  1. Inyushkin A.V., Taldenkov A.N., Ralchenko V.G., Shu Guoyang, Dai Bing, Bolshakov A.P., Khomich A.A., Ashkinazi E.E., Boldyrev K.N., Khomich A.V., Han Jiecai, Konov V.I., Zhu Jiaqi. Thermal conductivity of pink CVD diamond: Influence of nitrogen-related centers // J. Appl. Phys. 2023. V. 133. № 2. P. 025102: 1–14. https://doi.org/10.1063/5.0115623
  2. Suzuki K., Mikoshiba N. Effects of uniaxial stress and magnetic field on the low-temperature thermal conductivity of p-type Ge and Si // J. Phys. Soc. Jpn. 1971. V. 31. № 1. P. 44–53. https://doi.org/10.1143/JPSJ.31.44
  3. Erratum: Effects of uniaxial stress and magnetic field on the low-temperature thermal conductivity of p-type Ge and Si // J. Phys. Soc. Jpn. 1972. V. 32. № 2. P. 586(E). https://doi.org/10.1143/JPSJ.32.586A
  4. Challis L.J., Halbo L. Evidence for a Jahn-Teller effect in p-Ge from magnetothermal conductivity measurements // Phys. Rev. Lett. 1972. V. 28. № 13. P. 816–819. https://doi.org/10.1103/PhysRevLett.28.816
  5. Challis L.J., Heraud A.P. Magnetothermal conductivity of boron-doped-silicon // Proc. 4th International Conference on Phonon Scattering in Condensed Matter, University of Stuttgart, Germany, August 22–26, 1983. Eds: W. Eisenmenger, K. Lassmann, and S. Dottinger (Springer, Berlin, 1984), P. 368–370.
  6. Inyushkin A.V., Taldenkov A.N., Ralchenko V.G., Bolshakov A.P., Koliadin A.V., Katrusha A.N. Thermal conductivity of high purity synthetic single crystal diamonds // Phys. Rev. B. 2018. V. 97. № 14. P. 144305: 1–10. https://doi.org/10.1103/PhysRevB.97.144305
  7. Callaway J. Model for lattice thermal conductivity at low temperatures // Phys. Rev. 1959. V. 113, № 4. P. 1046–1051. https://doi.org/10.1103/PhysRev.113.1046

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025