Возраст-ассоциированные изменения функционального состояния микрогемоциркуляции
- Авторы: Дерюгина А.В.1, Данилова Д.А.1, Старателева Ю.А.1, Таламанова М.Н.1
-
Учреждения:
- Институт биологии и биомедицины Национального исследовательского Нижегородского государственного университета им. Н.И. Лобачевского
- Выпуск: Том 111, № 1 (2025)
- Страницы: 66-77
- Раздел: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://bioethicsjournal.ru/0869-8139/article/view/682951
- DOI: https://doi.org/10.31857/S0869813925010046
- EDN: https://elibrary.ru/UKJNEM
- ID: 682951
Цитировать
Аннотация
Микроциркуляторное русло является ключевым звеном сердечно-сосудистой системы, на уровне которого происходит транскапиллярный обмен, что обеспечивает поддержание гомеостаза организма. Анализ изменения механизмов регуляции микроциркуляции в зависимости от возраста непосредственно связан с развитием предиктивной медицины.
Цель работы – оценка динамики функциональных изменений микроциркуляции у различных возрастных когорт и выявление механизмов системы регуляции микроциркуляции в зависимости от возраста.
В исследовании принимали участие добровольцы (города Семенова), разделенные на три возрастных группы. Группа 1 в возрасте 18 – 44 года, группа 2 – 45–59 лет, группа 3 – 60–74 года. В работе проводили анализ нормированных характеристик ритмов колебаний кровотока, исследовали показатель микроциркуляции, показатели окислительного и энергетического метаболизма на лазерном диагностическом аппарате «ЛАЗМА СТ» (ООО НПП «Лазма», Россия). В ходе исследования показано снижение амплитуд эндотелиального ритма (Аэ), нейрогенного ритма (Ан) и сердечного ритма (Ас) во 2-й группе относительно 1-й группы, что сопровождалось ростом показателя микроциркуляции и усилением окислительного метаболизма. Дальнейшее увеличение перфузии и окислительного метаболизма в 3-й группе вызывало максимальное снижение Ас и Аэ, Ан и миогенного (Ам) ритмов по сравнению с 1-й и 2-й группами. Показатели энергетического метаболизма в группах значимо не изменялись.
Таким образом, с возрастом регистрировалось увеличение объема крови, поступающей в систему микроциркуляции, и усиление окислительного метаболизма, что сопровождалось не только изменением реактивности сердечной компоненты, но и увеличением роли местных механизмов регуляции в 3-й группе.
Ключевые слова
Полный текст

Об авторах
А. В. Дерюгина
Институт биологии и биомедицины Национального исследовательского Нижегородского государственного университета им. Н.И. Лобачевского
Email: danilovad.a@mail.ru
Россия, Нижний Новгород
Д. А. Данилова
Институт биологии и биомедицины Национального исследовательского Нижегородского государственного университета им. Н.И. Лобачевского
Автор, ответственный за переписку.
Email: danilovad.a@mail.ru
Россия, Нижний Новгород
Ю. А. Старателева
Институт биологии и биомедицины Национального исследовательского Нижегородского государственного университета им. Н.И. Лобачевского
Email: danilovad.a@mail.ru
Россия, Нижний Новгород
М. Н. Таламанова
Институт биологии и биомедицины Национального исследовательского Нижегородского государственного университета им. Н.И. Лобачевского
Email: danilovad.a@mail.ru
Россия, Нижний Новгород
Список литературы
- Guven G, Hilty MP, Ince C (2020) Microcirculation: physiology, pathophysiology, and clinical application. Blood Purif 49(1–2): 143–150. https://doi.org/10.1159/000503775
- Муравьев АВ, Михайлов ПВ, Тихомирова ИА (2017) Микроциркуляция и гемореология: точки взаимодействия. Регионар кровообращ микроциркул 16(2): 90–100. [Muravyov AV, Mikhailov PV, Tikhomirova IA (2017) Microcirculation and hemorheology: points of interaction. Region Blood Circul Microcircul 16(2): 90–100. (In Russ)]. https://doi.org/10.24884/1682-6655-2017-16-2-90-100
- Плотников БМ, Алиев ОИ, Анищенко АМ, Сидехменова АВ, Шаманаев АЮ, Фомина ТИ (2016) Параметры капиллярной сети коры головного мозга крыс линии SHR в периоды развития артериальной гипертензии и стабильно высокого артериального давления. Рос физиол журн им ИМ Сеченова 102(5): 558–566. [Plotnikov MB, Aliev OI, Anishchenko AM, Sidekhmenova AB, Shamanaev AY, Fomina TI (2016) Parameters of cerebral cortex capillary network in shr rats during the development of arterial hypertension and stable high blood pressure. Russ J Physiol 102(5): 558–566. (In Russ)].
- Бархатов ИВ (2013) Оценка системы микроциркуляции крови методом лазерной допплеровской флоуметрии. Клин мед 91(11): 21–27. [Barkhatov IV (2013) Assessment of the microcirculation system by laser Doppler flowmetry. Klin Med (Mosk) 91(11): 21–27. (In Russ)].
- Арутюнян АВ, Козина ЛС (2009) Механизмы свободнорадикального окисления и его роль в старении. Успехи геронтол 22(1): 104–116. [Arutiunian AV, Kozina LS (2009) Mechanisms of free radical oxidation and its role in aging. Adv Gerontol 22(1): 104–116. (In Russ)].
- Михайлов ПВ, Муравьев АВ, Осетров ИА, Муравьев АА (2019) Возрастные изменения микроциркуляции: роль регулярной физической активности. Науч результ биомед исследов 5(3): 82–91. [Mikhailov PV, Muravyov AV, Osetrov IA, Muravyov AА (2019) Age-related changes in microcirculation: the role of regular physical activity. Res Results Biomed 5(3): 82–91. (In Russ)]. https://doi.org/10.18413/2658-6533-2019-5-3-0-9
- Федорович АА (2010) Функциональное состояние регуляторных механизмов микроциркуляторного кровотока в норме и при артериальной гипертензии по данным лазерной допплеровской флоуметрии. Регионар кровообращ микроциркул 9(1): 49–60. [Fedorovich AA (2010) The functional state of regulatory mechanisms of the microcirculatory blood flow in normal conditions and in arterial hypertension according to laser doppler flowmetry. Region Blood Circulat Microcirculat 9(1): 49–60. (In Russ)]. https://doi.org/10.24884/1682-6655-2010-9-1-49-60
- Крупаткин АИ (2007) Лазерная доплеровская флоуметрия: международный опыт и распространенные ошибки. Регионар кровообращ микроциркул 6(21): 90–92. [Krupatkin AI (2007) Laser Doppler flowmetry: international experience and common mistakes. Region Blood Circulat Microcirculat 6(21): 90–92. (In Russ)].
- Kralj L, Lenasi H (2023) Wavelet analysis of laser Doppler microcirculatory signals: Current applications and limitations. Front Physiol 20(13): 1076445. https://doi.org/10.3389/fphys.2022.1076445
- Huang SJY, Wang X, Halvorson BD, Bao Y, Frisbee SJ, Frisbee JC, Goldman D (2024) Laser Doppler Fluximetry in Cutaneous Vasculature: Methods for Data Analyses. J Vasc Res 61(4): 197–211. https://doi.org/10.1159/000538718
- Martini R, Bagno A (2018) The wavelet analysis for the assessment of microvascular function with the laser Doppler fluxmetry over the last 20 years. Looking for hidden informations. Clin Hemorheol Microcirc 70(2): 213–229. https://doi.org/10.3233/CH-189903
- Theodossiou A, Hu L, Wang N, Nguyen U, Walsh AJ (2021) Autofluorescence Imaging to Evaluate Cellular Metabolism. J Vis Exp 177. https://doi.org/10.3791/63282
- Skala M, Ramanujam N (2010) Multiphoton redox ratio imaging for metabolic monitoring in vivo. Methods Mol Biol 594: 155–162. https://doi.org/10.1007/978-1-60761-411- 1_11
- Corpas FJ, Barroso JB (2014) NADPH-generating dehydrogenases: their role in the mechanism of protection against nitro-oxidative stress induced by adverse environmental conditions. Front Environ Sci 2. https://doi.org/10.3389/fenvs.2014.00055
- Staniszewski K, Audi SH, Sepehr R, Jacobs ER, Ranji M (2013) Surface fluorescence studies of tissue mitochondrial redox state in isolated perfused rat lungs. Ann Biomed Eng 41(4): 827–836. https://doi.org/10.1007/s10439-012-0716-z
- Абрамович СГ, Машанская АВ, Дробышев ВА, Долбилкин АЮ (2013) Вариабельность типов микроциркуляции у здоровых людей и больных артериальной гипертонией. Сибирск мед журн 2: 11. [Abramovich SG, Mashanskaya АV, Drobyshev VA, Dolbilkin АY (2013) Variability of microcirculation types at healthy people and patients with arterial hypertonia. J Siber Med 2: 11. (In Russ)].
- Раваева МЮ, Чуян ЕН (2018) Адаптация тканевой микрогемодинамики к условиям комбинации стрессовых факторов. Учен записки Крымск федер универ им ВИ Вернадского Биология Химия 4(70)(4): 165–179. [Ravaeva MYu, Chuyan EN (2018) Adaptation of tissue microhemodynamics to the conditions of combination of stress factors. Scient notes of Taurida Vernadsky National Univer Ser: Biol Chem 4(70)(4): 165–179. (In Russ)].
- Подзолков ВИ, Драгомирецкая НА, Беляев ЮГ, Русинов ИС (2021) Показатели микроциркуляции сосудов кожи у пациентов с хронической сердечной недостаточностью с различной степенью систолической дисфункции левого желудочка. Кардиоваск терапия и профилакт 20(7): 2989. [Podzolkov VI, Dragomiretskaya NA, Beliaev YuG, Rusinov IS (2021) Skin microcirculation in patients with heart failure with different left ventricular systolic dysfunction. Cardiovasc Therapy and Prevent 20(7): 2989. (In Russ)]. https://doi.org/10.15829/1728-8800-2021-2989
- Крупаткин АИ, Сидоров ВВ (2005) Лазерная допплеровская флоуметрия микроциркуляции крови. Москва. Медицина. [Krupatkin AI, Sidorov VV (2005) Laser doppler flowmetry of blood microcirculation. Moscow. Meditsina. (In Russ)].
- Kvandal P, Stefanovska A, Veber M, Kvernmo HD, Kirkebøen KA (2003) Regulation of human cutaneous circulation evaluated by laser Doppler flowmetry, iontophoresis, and spectral analysis: importance of nitric oxide and prostaglandines. Microvasc Res 65(3): 160–171. https://doi.org/10.1016/s0026-2862(03)00006-2
- Бокерия ОЛ, Куулар АМ (2014) Оценка влияния низкоинтенсивных электромагнитных полей на эндотелиальную функцию у больных с хронической сердечной недостаточностью. Сарат науч-мед журн 10(1): 86–92. [Bokeria OL, Kuular AM (2014) Influence of low-intensity electromagnetic fields on endothelial function in patients with chronic heart failure. Saratov J Med Scient Res 10(1): 86–92. (In Russ)].
- Li L, Mac-Mary S, Marsaut D, Sainthillier JM, Nouveau S, Gharbi T, de Lacharriere O, Humbert P (2006) Age-related changes in skin topography and microcirculation. Arch Dermatol Res 297(9): 412–416. https://doi.org/10.1007/s00403-005-0628-y
- Li L, Mac-Mary S, Sainthillier JM, Nouveau S, de Lacharriere O, Humbert P (2006) Age-related changes of the cutaneous microcirculation in vivo. Gerontology 52(3): 142–153. https://doi.org/10.1159/000091823
- Albu M, Seicaru DA, Plesea RM, Mirea OC, Gherghiceanu F, Grigorean VT, Cordos I, Litescu M, Plesea IE, Serbanescu MS (2021) Assessment of the aortic wall histological changes with ageing. Rom J Morphol Embryol 62(1): 85–100. https://doi.org/10.47162/RJME.62.1.08
- Rogers WJ, Hu YL, Coast D, Vido DA, Kramer CM, Pyeritz RE, Reichek N (2001) Age-associated changes in regional aortic pulse wave velocity. J Am Coll Cardiol 38(4): 1123–1129. https://doi.org/10.1016/s0735-1097(01)01504-2
- Collins JA, Munoz JV, Patel TR, Loukas M, Tubbs RS (2014) The anatomy of the aging aorta. Clin Anat 27(3): 463–466. https://doi.org/10.1002/ca.22384
- London GM, Guérin AP, Marchais SJ, Metivier F, Pannier B, Adda H (2003) Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol Dial Transplant 18(9): 1731–1740. https://doi.org/10.1093/ndt/gfg414
- Pescatore LA, Gamarra LF, Liberman M (2019) Multifaceted Mechanisms of Vascular Calcification in Aging. Arterioscler Thromb Vasc Biol 39(7): 1307–1316. https://doi.org/10.1161/ATVBAHA.118.311576
- Donato AJ, Machin DR, Lesniewski LA (2018) Mechanisms of dysfunction in the aging vasculature and role in age-related disease. Circ Res 123(7): 825–848. https://doi.org/10.1161/circresaha.118.312563
- Van Bussel FC, van Bussel BC, Hoeks AP, Op't Roodt J, Henry RM, Ferreira I, Vanmolkot FH, Schalkwijk CG, Stehouwer CD, Reesink KD (2015) A control systems approach to quantify wall shear stress normalization by flow-mediated dilation in the brachial artery. PLoS One 10(2): e0115977. https://doi.org/10.1371/journal.pone.0115977
- Jaminon A, Reesink K, Kroon A, Schurgers L (2019) The role of vascular smooth muscle cells in arterial remodeling: focus on calcification-related processes. Int J Mol Sci 20: 5694. https://doi.org/10.3390/ijms20225694
- Uchimido R, Schmidt EP, Shapiro NI (2019) The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care 23(1): 16. https://doi.org/10.1186/s13054-018-2292-6
- Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9: 121–167. https://doi.org/10.1146/annurev.bioeng.9.060906.151959
- Литвин ФБ, Голощапова СС, Аверьянов МА, Мартынов СВ, Жигало ВЯ, Аносов ИП (2013) Влияние кратковременного применения экстракта лимонника китайского на микроциркуляцию крови у спортсменов. Вестн Брянск гос универ 4: 120–124. [Litvin FB, Goloshchcapova SS, Averyanov MA, Martinov SV, Jigalo VYa, Anosov IP (2013) The influence of shot-term use of schizandra chinensis (turkz) Baill extract on sportsmen blood microcirculation. Bryansk state univer herald 4: 120–124. (In Russ)]
- Муравьев АВ, Ахапкина АА, Михайлов ПВ, Муравьев АА (2014) Микроциркуляция в коже при мышечной нагрузке как модель для изучения общих механизмов изменения микрокровотока. Регионар кровообращ микроциркул 13(2): 64–68. [Muravyov AV, Akhapkina AA, Mikhailov PV, Muravyov AA (2014) Skin microcirculation under muscular exercise as a model for the study of the mechanisms of microcirculatory alterations. Region Blood Circulat Microcirculat 13(2): 64–68. (In Russ)]. https://doi.org/10.24884/1682-6655-2014-13-2-64-68
Дополнительные файлы
