Development of computer methods in binocular treatment of strabismus and amblyopia

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Computer methods were introduced into the practice of strabismus and amblyopia treatment in the 1990s. In Russian ophthalmological institutes, several independent groups of specialists were organized to create interactive computer programs (ICP) for diagnosis and treatment of these binocular vision disorders. This resulted in the emergence of a variety of equipment based on ICPs differing in purpose, technology of left and right image separation, and design. The main factors determining the prospects of these computer methods are achievements of the fundamental researches of the visual system, the results of using ICPs in practice, and technical innovations. However, the realization of this potential is hindered by a number of marketing and social factors that impede the exchange of important information between different groups which develop and use ICPs, as well as the lack of theoretical discussion of the general methodology, methods of ICP optimization, and conditions of using different ICPs. Due to the emergence of fundamentally new data concerning the pathogenesis and treatment of amblyopia and the possibility of successful activation of long-blocked (“dormant”) binocular mechanisms in adult patients, the need to revise the current situation is acutely felt. Opinions regarding the effectiveness of computerized binocular therapy (BT) methods are contradictory: some researchers estimate it very high, while others see little or no specific benefit from BT compared to the traditional methods. In this article, some reasons explaining the lack of consensus are discussed: vague criteria of the methods belonging to the “BT class”, differences in technical implementation of BT, specificity of visual stimuli and conditions of BT application, differences in patient groups and interaction with patients (such as training, instruction, assistance, encouragement, involvement in the choice of working material, etc.). The requirements for adequate expertise of each method and comparative assessment of different methods are discussed.

Texto integral

Acesso é fechado

Sobre autores

G. Rozhkova

Institute for Information Transmission Problems (Kharkevich institute) RAS

Autor responsável pela correspondência
Email: gir@iitp.ru
Rússia, Moscow

T. Podugolnikova

Institute for Information Transmission Problems (Kharkevich institute) RAS

Email: gir@iitp.ru
Rússia, Moscow

M. Gracheva

Institute for Information Transmission Problems (Kharkevich institute) RAS

Email: gir@iitp.ru
Rússia, Moscow

N. Vasilyeva

Institute for Information Transmission Problems (Kharkevich institute) RAS

Email: gir@iitp.ru
Rússia, Moscow

A. Belokopytov

Institute for Information Transmission Problems (Kharkevich institute) RAS

Email: gir@iitp.ru
Rússia, Moscow

N. Kononova

Eye Diagnostic and Surgery Center, Vision Laboratory

Email: gir@iitp.ru
Rússia, Saint Petersburg

I. Khatsenko

“Morozov Children’s Clinical Hospital”

Email: gir@iitp.ru
Rússia, Moscow

Bibliografia

  1. Avdeeva A.A. Vosstanovlenie zritel’nykh funktsii pri ambliopii i organicheskikh zabolevaniyakh glaz metodom aktivnogo bioupravleniya i samoregulyatsii v usloviyakh obratnoi biologicheskoi svyazi [Restoration of visual functions in amblyopia and organic eye diseases by active biocontrol and self-regulation in biofeedback conditions.]. PhD Thesis. Moscow, 2000. 195 p. (in Russian)
  2. Avetisov S.EH., Kashchenko T.P., Shamshinova A.M. Zritel’nye funktsii i ikh korrektsiya u detei. [Visual functions and their correction in children]. Moscow: Meditsina, 2005. 872 p. (in Russian)
  3. Alekseenko S.V., Shkorbatova P.YU. Deprivatsionnaya i disbinokulyarnaya ambliopiya: narusheniya v genikulo-korkovykh zritel’nykh putyakh [Deprivation and dysbinocular amblyopia: disorders in geniculo-cortical visual pathways]. Al’manakh klinicheskoi meditsiny. 2015. (36). P. 97-100. (in Russian)
  4. Bazarnyi V.F. Zrenie u detei. Problemy razvitiya [Vision in children. Problems of development]. Novosibirsk: Nauka, 1991. 138 p. (in Russian)
  5. Belozerov A.E. Komp’yuternyi metod issledovaniya prostranstvenno-chastotnykh komponent stereopsisa. [Computer method of investigation of spatial-frequency components of stereopsis] Sovremennye aspekty neirooftal’mologii. Materialy III Moskovskoi nauchno-prakticheskoi neirooftal’mologicheskoi konferentsii. M.: NII neirokhirurgii imeni akademika N.N. Burdenko RAMN, 1999. P. 10-11. (in Russian)
  6. Belozerov A.E. Komp’yuternye metody funktsional’noi diagnostiki i lecheniya v oftal’mologii. [Computer methods of functional diagnostics and treatment in ophthalmology.] Klinicheskaya fiziologiya zreniya. Eds. A.M. Shamshinovoi, A.A. Yakovleva, E.V. Romanovoi. M.: Nauchno-meditsinskaya firma MBN, 2002. P. 236-259. (in Russian)
  7. Belozerov A.E. Komp’yuternye metody funktsional’noi diagnostiki i lecheniya v detskoi oftal’mologii. [Computer methods of functional diagnostics and treatment in pediatric ophthalmology] Zritel’nye funktsii i ikh korrektsiya u detei: Rukovodstvo dlya vrachei. Eds. S.EH. Avetisova, T.P. Kashchenko, A.M. Shamshinovoi. 2005. M.: Meditsina, 2005. P. 268-309. (in Russian)
  8. Belousov N.K., Arzamastsev A.A. Programmnyi kompleks dlya obespecheniya video-komp’yuternoi korrektsii zreniya u detei [Program complex for video-computer correction of vision in children]. Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki. 2013. V. 18(5). P. 2946. (in Russian)
  9. Bol’shakov A.S., Gracheva M.A. Interaktivnaya testovaya programma dlya otsenki ostroty stereozreniya “STEREOPOROG” [Interactive test program for assessing stereo vision acuity “STEREOPOROG”]. Certificate of state registration of computer program № 2012660683, 28.11.2012. (in Russian)
  10. Bol’shakov A.S., Gracheva M.A., Rozhkova G.I. Interaktivnaya programma dlya povysheniya ostroty zreniya i skorosti zritel’noi raboty pri ambliopii “POISK” [Interactive program to improve visual acuity and speed of visual work in amblyopia “POISK”] 2013а. Certificate of state registration of computer program № 2013610976, 09.01.2013. (in Russian)
  11. Bol’shakov A.S., Kochegarova T.D., Isakova N.A. Ob opyte lecheniya ambliopii pri pomoshchi programmy “POISK”, vkhodyashchei v sostav komp’yuternogo kompleksa 3D-BIS [On the experience of amblyopia treatment using the program “POISK”, which is part of the 3D-BIS computer complex]. XI Vserossiiskaya nauchno-prakticheskaya konferentsiya s mezhdunarodnym uchastiem “Fedorovskie chteniya – 2013”. M.: Oftal’mologiya. 2013b. P. 60. (in Russian)
  12. Bol’shakov A.S., Rozhkova G.I. Interaktivnaya testovaya programma dlya otsenki sostoyaniya i trenirovki fuzionnykh mekhanizmov binokulyarnogo zreniya “FUZIYA” [Interactive test program for assessing the state and training of fusional mechanisms of binocular vision “FUSIA”.]. 2013. Certificate of state registration of computer program № 2013610975 ot 09.01.2013. (in Russian)
  13. Vasil’eva N.N., Rozhkova G.I., Gracheva M.A., Bol’shakov A.S. Zavisimost’ rezul’tatov otsenki fuzionnykh rezervov ot metoda izmereniya, instrumentariya i parametrov testovykh stimulov [Dependence of the results of estimation of fusion reserves on the method of measurement, instrumentation and parameters of test stimuli]. Sensornye sistemy. 2022. V. 36(3). P. 199-217. https://doi.org/10.31857/S023500922203009X (in Russian)
  14. Volkov V.V. Pokazateli vizo- i refraktometrii v otsenke zritel’noi rabotosposobnosti [Indices of viso– and refractometry in estimation of visual performance]. Oftal’mol. zhurn. 1986. (8). P 455-458. (in Russian)
  15. Volkov V.V. Psikhofiziologiya zritel’nogo protsessa i metody ego izucheniya [Psychophysiology of the visual process and methods of its study]. Klinicheskaya fiziologiya zreniya. Sbornik nauchnykh trudov. M.: RUSOMED, 1993. P. 158-179. (in Russian)
  16. Vul’f D.M. Skrytye zritel’nye protsessy [Hidden visual processes]. V mire nauki. 1983. (4). P. 26-34. (in Russian)
  17. Glezer V.D. Kusochnyi Fur’e-analiz izobrazhenii i rol’ zatylochnoi, visochnoi i temennoi kory v zritel’nom vospriyatii [Piecewise Fourier analysis of images and the role of occipital, temporal and parietal cortex in visual perception.]. Fiziol. zhurn. SSSR im. I. M. Sechenova. 1978. V. 64. (12). P. 1719-1730. (in Russian)
  18. Glezer V.D. Zrenie i myshlenie [Vision and thinking]. L.: Nauka, 1985. 246 p. (in Russian)
  19. Glezer V.D. O roli prostranstvenno-chastotnogo analiza, primitivov i mezhpolusharnoi asimmetrii v opoznanii zritel’nykh obrazov [On the role of spatial-frequency analysis, primitives and interhemispheric asymmetry in the recognition of visual images.]. Fiziologiya cheloveka. 2000. V. 26. (5). P. 145-150. (in Russian)
  20. Goncharova S.A., Petrunya A.M., Panteleev G.V., Tyrlovaya E.I. Vtorichnoe kosoglazie [Secondary strabismus.]. Oftal’mologicheskii zhurnal. 2010. (3). P. 25-29. (in Russian)
  21. Gorev V.V., Gorbunov A.V., Panikratova YA.R., Tomyshev A.S., Khatsenko I.E., Kuleshov N.N., Salmasi ZH.M., Khasanova K.A., Balashova L.M., Lobanova E.I., Lebedeva I.S. Izmeneniya v zritel’nykh zonakh kory golovnogo mozga u detei pri levostoronnei anizometropicheskoi ambliopii po dannym strukturnoi MRT i funktsional’noi MRT pokoya [Changes in visual cortical areas of the brain in children with left-sided anisometropic amblyopia according to structural MRI and functional resting MRI]. Sensornye sistemy. 2024. V. 38(1). P.30-44. https://doi.org/10.31857/S0235009224010027 (in Russian)
  22. Gracheva M.A. Primenenie sovremennykh 3D-tekhnologii dlya otsenki stereozreniya i ego korrektsii [pplication of modern 3D-technologies for estimation of stereo vision and its correction]. PhD Thesis Abstract. M., 2017. 26 p. (in Russian)
  23. Gracheva M.A., Bol’shakov A.S. Sovremennye shlemy virtual’noi real’nosti: prichiny poyavleniya diskomforta i sposoby ikh ispravleniya [Modern virtual reality helmets: causes of discomfort and ways to correct them]. Kinomekhanik segodnya. 2016. (6). P. 30-35. (in Russian)
  24. Gracheva M.A., Bol’shakov A.S., Kruttsova E.N., Nikolaev D.P. Stereotekhnologii: separatsiya izobrazhenii, istoriya razvitiya metodov, sovremennye primeneniya [Stereotechnologies: image separation, history of methods development, modern applications]. Stereozrenie cheloveka i stereotekhnologii. M.: OOO “KUNA”, 2022. P. 24-36. (in Russian)
  25. Gracheva M.A., Rozhkova G.I. Stereoostrota zreniya: osnovnye ponyatiya, metody izmereniya, vozrastnaya dinamika [Stereoacuity of vision: basic concepts, methods of measurement, age dynamics]. Sensornye Sistemy. 2012. V. 26(4). P. 259–279. (in Russian)
  26. Efimova E.L. Komp’yuternye pleopto-ortopticheskie metody lecheniya vtorichnoj ambliopii u detej [Computerized pleopto-orthoptic techniques for the treatment of secondary amblyopia in children]. Avtoref. dis. … kand. med. nauk, 14.00.07. SPb.; 2011. 20 p. (In Russian)
  27. Kononova N.E., Somov E.E. Clinic and treatment of preschool children with monolateral and alternating concomitant strabismus [Clinic and treatment of preschool children with monolateral and alternating sopic strabismus]. Rossiyskaya detskaya oftalmologiya. 2020. V. 2. P. 7–11. (In Russian) https://doi.org/10.25276/2307-6658-2020-2-7-11
  28. Kononova N.E., Somov E.E., Efimova E.L. K voprosu o klinicheskoi suti sodruzhestvennogo kosoglaziya, funktsional’nykh narusheniyakh i rasprostranenii v populyatsii [To the question about the clinical essence of the concomitant strabismus, functional disorders and distribution in the population]. Rossiiskaya detskaya oftal’mologiya. 2023. (2). P. 52–60. https://doi.org/10.25276/2307-6658-2023-2-52-60 (in Russian)
  29. Kuvshinova O.V., Utkina O.A., Dergacheva N.N., Medvedeva A.I. Vosstanovlenie zritel’nykh funktsii u patsientov s refraktsionnoi ambliopiei v usloviyakh virtual’noi okklyuzii pri ispol’zovanii komp’yuternoi programmy, razrabotannoi na baze 3D tekhnologii [Restoration of visual functions in patients with refractive amblyopia in conditions of virtual occlusion using a computer program developed on the basis of 3D technologies.]. Vestnik soveta molodykh uchenykh i spetsialistov Chelyabinskoi oblasti. 2017. V. 3(4(19)). P. 61-63. (in Russian)
  30. Kuznetsov YU.V. Naznachenie rasstoyaniya mezhdu opticheskimi tsentrami linz v ochkakh [Appointment of distance between optical centers of lenses in glasses]. SPb: OOO “RA “VEKO””, 2009. 104 p. (in Russian)
  31. Kuman I.G. Issledovanie neirofiziologicheskikh mekhanizmov odnostoronnei ambliopii [Study of neurophysiologic mechanisms of unilateral amblyopia]. Avtoref. kand. biol. nauk. M., 1984. 23 p. (in Russian)
  32. Lebedeva I.S., Khatsenko I.E., Sturov N.V., Guseva M.R., Lobanova I.V., Vykhristyuk O.F., Kyun YU.A., Tomyshev A.S. Strukturnye osobennosti golovnogo mozga rebenka pri odnostoronnei ambliopii: MRT-issledovanie [Structural features of the child’s brain in unilateral amblyopia: an MRI study.]. Zhurnal nevrologii i psikhiatrii im S.S. Korsakova. Spetsvypuski. 2018. V. 118(5-2). P. 69-74. https://doi.org/10.17116/jnevro20181185269 (in Russian)
  33. Maiorov N.A. Samye pervye v istorii razvitiya mirovogo kinematografa [The very first in the history of world cinematography development (part 1)]. Mir tekhniki kino. 2018a. V. 12 (2). P. 38-40. (in Russian)
  34. Maiorov N.A. Samye pervye v istorii razvitiya mirovogo kinematografa [The very first in the history of world cinematography development (part 2)]. Mir tekhniki kino. 2018b. V. 12. (3). P. 37-40. (in Russian)
  35. Novitskaya V.A., Karyakina O.E., Karyakin A.A., Orudzhova O.N. Komp’yuternaya programma dlya vosstanovleniya zritel’nykh funktsii u detei s ambliopiei [A computer program to restore visual function in children with amblyopia.]. Sovremennye naukoemkie tekhnologii. 2022. (4). P. 68-73. (in Russian)
  36. Pil’man N.I. Funktsional’noe lechenie kosoglaziya u detei [Functional treatment of strabismus in children.]. Kiev: Zdorov`ya, 1964. 225 p. (in Russian)
  37. Pil’man N.I. Ispravlenie kosoglaziya u detei [Correction of strabismus in children]. Kiev: Zdorov`ya, 1979. 144 p. (in Russian)
  38. Podugol’nikova T.A. Povyshenie ostroty zreniya pri ambliopii s pomoshch’yu pertseptivnogo obucheniya [Increase of visual acuity in amblyopia with the help of perceptual learning]. Defektologiya. 2012. (4). P. 31-37. (in Russian)
  39. Podugol’nikova T.A., Rozhkova G.I., Kononov V.M. Ispol’zovanie komp’yuternogo kompleksa “AkademiK” dlya funktsional’nogo lecheniya narushenii binokulyarnogo zreniya [Use of computer complex “Akademik” for functional treatment of binocular vision disorders.]. Sovremennye problemy detskoi oftal’mologii. Materialy yubileinoi nauchnoi konferentsii, posvyashchennoi 70-letiyu kafedry detskoi oftal’mologii Sankt-Peterburgskoi gosudarstvennoi pediatricheskoi meditsinskoi akademii Federal’nogo agentstva po zdravookhraneniyu i sotsial’nomu razvitiyu. SPb., 2005. P. 145-147. (in Russian)
  40. Rozhkova G.I., Gracheva M.A. Estestvennyi khromostereopsis: prichiny i individual’nye variatsii binokulyarnykh prostranstvennykh tsvetovykh ehffektov [Natural chromostereopsis: causes and individual variations of binocular spatial color effects]. Sensornye sistemy. 2014. V. 28. (1). P. 3-14. (in Russian)
  41. Rozhkova G.I., Kononov V.M. Optiko-fiziologicheskie osnovy ispol’zovaniya interaktivnykh komp’yuternykh programm v funktsional’nom lechenii kosoglaziya [Optico-physiological bases of using interactive computer programs in functional treatment of strabismus. Modern problems of pediatric ophthalmology]. Sovremennye problemy detskoi oftal’mologii. Materialy yubileinoi nauchnoi konferentsii, posvyashchennoi 70-letiyu kafedry detskoi oftal’mologii Sankt-Peterburgskoi gosudarstvennoi pediatricheskoi meditsinskoi akademii Federal’nogo agentstva po zdravookhraneniyu i sotsial’nomu razvitiyu. SPb, 2005. P. 121-124. (in Russian)
  42. Rozhkova G.I., Lozinskii I.T., Gracheva M.A., Bol’shakov A.S., Vorob’ev A.V., Sen’ko I.V., Belokopytov A.V. Funktsional’naya korrektsiya narushennogo binokulyarnogo zreniya: preimushchestva ispol’zovaniya novykh komp’yuternykh tekhnologii [Functional correction of disturbed binocular vision: advantages of using new computer technologies]. Sensornye sistemy. 2015. V. 29. (2). P. 99–121. (in Russian)
  43. Rozhkova G.I., Matveev S.G. Zrenie detei: problemy otsenki i funktsional’noi korrektsii [Vision of children: problems of assessment and functional correction]. M.: Nauka, 2007. 315 p. (in Russian)
  44. Rozhkova G.I., Ploskonos G.A. Mnozhestvennost’ mekhanizmov binokulyarnogo sinteza i ikh izbiratel’nye narusheniya pri kosoglazii [Multiple mechanisms of binocular synthesis and their selective disorders in strabismus.]. Sensornye sistemy. 1988. V. 2. (2). P. 167-176. (in Russian)
  45. Rozhkova G.I., Podugol’nikova T.A., Leshkevich I.A., Nosov V.N., Matveev S.G. Komp’yuternoe lechenie kosoglaziya i ambliopii s primeneniem sluchaino-tochechnykh stereogramm []Computerized treatment of strabismus and amblyopia using random-point stereograms. Vestnik oftal’mologii. 1998. V. 114 (4). P. 28-32. (in Russian)
  46. Rozhkova G.I., Podugol’nikova T.A. Primenenie interaktivnykh komp’yuternykh programm dlya vosstanovleniya i razvitiya binokulyarnykh funktsii [Application of interactive computer programs for restoration and development of binocular functions.]. Aktual’nye problemy sotsializatsii invalidov po zreniyu. SPb.: Izdatel’stvo RGPU im. A.I. Gertsena, 1999. P. 73-78 (in Russian)
  47. Rozhkova G.I., Podugol’nikova T.A., Tokareva V.S. Komp’yuternye metody funktsional’nogo lecheniya ambliopii i kosoglaziya: neobkhodimost’ ispol’zovaniya printsipial’no novykh podkhodov i kriteriev [Computer methods of functional treatment of amblyopia and strabismus: the necessity of using fundamentally new approaches and criteria.]. Materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii: Okhrana zreniya detei Ukrainy v ramkakh vypolneniya programmy VOZ “Zrenie-2020” s prakticheskim seminarom “Zhivaya khirurgiYA”. Kiev, 2005. P. 261-264. (in Russian)
  48. Rozhkova G.I., Podugol’nikova T.A., Tokareva V.S., Vorontsov D.D., Golubkov M.G., Drygin S.V. Integrirovannyi lechebno-diagnosticheskii kompleks programm “AKADEMIK” [Integrated medical-diagnostic complex of programs “AKADEMIK”]. 1996. Sertifikat sootvetstviya “ROSS RU. SP07.N00035”. (in Russian)
  49. Rozhkova G.I., Rychkova S.I., Gracheva M.A., Tahchidi H.P. Individualnaya optimizatsiya funktsionalnoi korrektsii narushennogo binokulyarnogo zreniya [Individual optimization of functional treatment in the cases of impaired binocular vision]. Sensornye sistemy [Sensory systems]. 2015. V. 29(4). P. 341-353 (in Russian).
  50. Rozhkova G.I., Rychkova S.I., Naumova O.I., Gracheva M.A., Bykova T.A., Ehffektivnost’ lecheniya ambliopii s primeneniem virtual’noi okklyuzii na baze 3D tekhnologii [Effectiveness of amblyopia treatment using virtual occlusion based on 3D technology]. “Nevskie gorizonty-2016”. Materialy nauchnoi konferentsii oftal›mologov. SPBGPMU. SPb.: Politekhnika-servis, 2016. P. 222–223. (in Russian)
  51. Rozhkova G.I., Tokareva V.S., Vashchenko D.I., Vasil’eva N.N. Vozrastnaya dinamika ostroty zreniya u shkol’nikov. I. Binokulyarnaya ostrota zreniya dlya dali [Age dynamics of visual acuity in schoolchildren. I. Binocular visual acuity for far]. Sensornye sistemy. 2001. V. 15. (1). P. 54-60. (in Russian)
  52. Sen’ko I.V., Rychkova S.I., Gracheva M.A., Takhchidi KH.P. Razvitie binokulyarnykh funktsii u patsientov s kosoglaziem putem vozdeistviya na funktsional’nuyu skotomu komp’yuternymi metodami [Development of binocular functions in patients with strabismus by influence on functional scotoma by computer methods]. Sensornye sistemy. 2016. V. 30. (4). P. 319-325. (in Russian)
  53. Sergievskii L.I. Sodruzhestvennoe kosoglazie i geteroforii. Profilaktika, diagnostika, lechenie bez operatsii [Concomitant strabismus and heterophoria. Prophylaxis, diagnostics, treatment without surgery.]. M.: Medgiz, 1951. 244 p. (in Russian)
  54. Somov E.E. Metody oftal’moehrgonomiki [Methods of ophthalmic ergonomics]. L.: Nauka, 1989. 157 p. (in Russian)
  55. Tarutta E.P., Khubieva R.R., Milash S.V., Apaev A.V., Aklaeva N.A., Zol’nikova I.V. Novyi metod lecheniya ambliopii u detei s neustoichivoi tsentral’noi i netsentral’noi fiksatsiei s pomoshch’yu biologicheskoi obratnoi svyazi [A new method of amblyopia treatment in children with unstable central and non-central fixation using biofeedback]. Rossiiskii oftal’mologicheskii zhurnal. 2022. V. 15. (2). P.109-119. https://doi.org/10.21516/2072-0076-2022-15-2-109-119 (in Russian)
  56. Tatarinov S.A., Kashchenko T.P., Amel’yanova S.G., Avuchenkova T.N., Galich V.I., Belozerova A.E., Timokhova G.P., Shapiro V.M. Vosstanovlenie zritel’nykh funktsii pri ambliopi i kosoglazii s pomoshch’yu programmno-apparatnogo kompleksa “eYe” [Restoration of visual functions in amblyopia and strabismus with the help of software and hardware complex “eYe”.]. Metodicheskie rekomendatsii. M.: MNII GB, 1996. 10 p. (in Russian)
  57. Timoshenko T.A., Shtilerman A.L. Rezul’taty lecheniya refraktsionnoi ambliopii vysokoi stepeni u detei s ispol’zovaniem metodov kognitivnoi modulyatsii ostroty zreniya i ehlektrostimulyatsii [Results of treatment of high degree refractive amblyopia in children using methods of cognitive modulation of visual acuity and electrical stimulation]. Rossiiskii oftal’mologicheskii zhurnal. 2014. V. 7 (1). P. 45-49. (in Russian)
  58. Tumanova O.V., Medvedev I.B., Mikhailenok E.L. Lechenie ambliopii metodom kognitivnoi modulyatsii ostroty zreniya [Treatment of amblyopia by cognitive modulation of visual acuity]. Glaz. 2001. (6). P. 31-35. (in Russian)
  59. Tumanyan S.A., Kechek A.G. Sposob korrektsii zritel’nykh funktsii [Method of correction of visual functions]. Patent RF A.S.№2070011. BI № 34. 10.12.1996. (in Russian)
  60. Tumanyan S.A., Bogdanov O.V., Mikhailenok E.L., Movsisyants S.A. Ispol’zovanie priemov funktsional’nogo bioupravleniya v kompleksnom lechenii ambliopii [Use of functional biocontrol methods in complex treatment of amblyopia.]. Vestnik oftal’mologii. 1993. V. 109. (4). P. 11-13. (in Russian)
  61. State clinical recommendations. Diagnostika i lechenie sodruzhestvennogo kosoglaziya [Diagnosis and treatment of concomitant strabismus]. Rossiiskaya Pediatricheskaya Oftal’mologiya [Russian Pediatric Ophthalmology]. 2015. (2). P. 56-63. (in Russian).
  62. Khatsenko I.E., Rozhkova G.I., Gracheva M.A., Salmasi ZH.M., Balashova L.M. Patogenez i opisanie ambliopii. Chast’ 1. Prichiny ehvolyutsii predstavlenii [Pathogenesis and description of amblyopia. Part 1. Reasons for the evolution of representations.]. Rossiiskaya detskaya oftal’mologiya. 2023a. (3). P. 37-47. https://doi.org/10.25276/2307-6658-2023-3-37-47 (in Russian)
  63. Khatsenko I.E., Rozhkova G.I., Gracheva M.A., Salmasi ZH.M., Balashova L.M. Patogenez i opisanie ambliopii. Chast’ 2. Analiz opredelenii [Pathogenesis and description of amblyopia. Part 2. Analysis of definitions.]. Rossiiskaya detskaya oftal’mologiya. 2023b. (3). P. 48-54. https://doi.org/10.25276/2307-6658-2023-3-48-54 (in Russian)
  64. Khvatova N.V., Slyshalova A.E., Vakurina A.E. Ambliopiya: zritel’nye funktsii, patogenez i printsipy lecheniya. Zritel’nye funktsii i ikh korrektsiya u detei [Amblyopia: visual functions, pathogenesis and principles of treatment. Visual functions and their correction in children.]. Eds. S.EH. Avetisova, T.P. Kashchenko, A.M. Shamshinovoi. M.; 2005. P. 202– 220. (in Russian)
  65. Kh’yubel D. Glaz, mozg, zrenie [Eye, Brain, Vision]. Per. s angl. M.: Mir, 1990. 239 p. (in Russian)
  66. Chernysheva S.G., Samedova D.KH. Struktura i prichiny neudovletvoritel’nykh rezul’tatov khirurgicheskogo lecheniya sodruzhestvennogo kosoglaziya [Structure and reasons of unsatisfactory results of surgical treatment of concomitant strabismus]. Oftalmologiya. 2013. V. 1(11). P. 158-164. (in Russian)
  67. Shelepin YU.E., Kolesnikova L.N., Levkovich YU.I. Vizokontrastometriya [Visocontrastometry]. L.: Nauka, 1985. 103 p. (in Russian)
  68. Achtman R., Green C., Bavelier D. Video games as a tool to train visual skills. Restorative Neurology and Neuroscience. 2008. V. 26(4-5). P. 435–446,
  69. Agarwal A. Axial angles of the eye. Textbook of ophthalmology. Jaypee Brothers Medical Publishers. 2002. P. 422-423.
  70. Andalib D., Nabie R., Poormohammad B. Factors Affecting Improvement of Stereopsis Following Successful Surgical Correction of Childhood Strabismus in Adults. Strabismus. 2015. V. 23(2). P. 80-84. https://doi.org/10.3109/09273972.2015.1025985.PMID: 26158474
  71. Asper L. Optical treatment of amblyopia: a systematic review and meta-analysis. Clinical and Experimental Optometry. 2018. P. 1-12.
  72. Astle A.T., McGraw P.V., Webb B.S. Can human amblyopia be treated in adulthood? Strabismus. 2011. V. 19 (3). P. 99-109. https://doi.org/10.3109/09273972.2011.600420
  73. Atkinson J. The developing visual brain. N.Y.: Oxford Univ.press, 2000. 211 p.
  74. Barry S.R. Fixing my gaze: A scientist’s journey into seeing in three dimensions. 2009. 272 p.
  75. Barry S.R. Beyond the critical period: Acquiring stereopsis in adulthood. In: Steeves J.K.E., Harris L.R., eds. Plasticity in Sensory Systems. Cambridge University Press; 2012. P. 175-195. https://doi.org/10.1017/CBO9781139136907.010
  76. Barry S.R., Bridgeman B. An assessment of stereovision acquired in adulthood. Optom. Vis. Sci. 2017. V. 94. P. 993-999. https://doi.org/10.1097/OPX.0000000000001115
  77. Bennett A.G., Rabbets R.B. Clinical visual optics. London: Butterworth-Heinemann, 1998. 451 p.
  78. Birch E.E., Gwiazda J., Held R. Stereoacuity development for crossed and uncrossed disparities in human infants. Vision Res. 1982. V. 22. P. 507–13.
  79. Birch E.E., Li S.L., Jost R.M., et al. Binocular iPad treatment for amblyopia in preschool children. JAAPOS. 2015. V. 19. P. 6-11. https://doi.org/10.1016/j.jaapos.2014.09.009
  80. Bolshakov A., Gracheva M., Rychkova S., Rozhkova G., Amblyopia treatment: Advantages of virtual occlusion based on a contemporary 3D technique. Perception. 2016. V. 45, Suppl. P. 301-302.
  81. Bonfanti S., Gargantini A. Amblyopia rehabilitation by games for low-cost virtual reality visors. International Workshop on ICTs for Improving Patients Rehabilitation Research Techniques. Cham : Springer International Publishing, 2015. P. 116-125.
  82. Braddick O., Atkinson J. Some recent findings on the development of human binocularity: A review. Behav. Brain Res. 1983. V. 10(1). P. 141-150. https://doi.org/10.1016/0166-4328(83)90160-2
  83. Braddick O., Atkinson J., Julesz B., Kropfl W., Bodis-Wollner I., Raab E. Cortical binocularity in infants. Nature. 1980. V. 228. P. 363-365. https://doi.org/10.1038/288363a0
  84. Bridgeman B., Barry S.R. Survey of patients with stereopsis acquired as adults. Vis Rev Rehabil. 2015. V. (1). P. 13.
  85. Buffon Comte de (Leclerc G.L.). Dissertation sur la cause du strabisme ou deux yeux louches. Memoires de Mathématique et de Physique de l’Académie Royale des Sciences. 1743. P. 231-248.
  86. Campbell F.W., Hess R.F., Watson P.G., Banks R. Preliminary results of a physiologically based treatment of amblyopia. Brit. J. Ophthalmol. 1978. V. 62(11). P. 748-755.
  87. Campbell F.W., Robson J. Application of Fourier analysis to the visibility of gratings. J. Physiol. 1968. V. 197(3). P. 551-561.
  88. Cleary M., Moody A.D., Buchanan A., Stewart H., Dutton G.N. Assessment of a computer-based treatment for older amblyopes: the Glasgow Pilot Study. Eye (Lond). 2009. V. 23(1). P. 124-131. https://doi.org/10.1038/sj.eye.6702977
  89. Deshpande P.G., Bhalchandra P.C., Nalgirkar A.R., Tathe S.R. Improvement of visual acuity in residual meridional amblyopia by astigmatic axis video games. Indian J Ophthalmol. 2018. V. 66(8). P. 1156-60.
  90. Gargantini A., Bana M., Fabiani F. Using 3D for rebalancing the visual system of amblyopic children. International Conference on Virtual Rehabilitation (ICVR). 2011. P. 1–7.
  91. Gifford S.R. Some notes on the treatment of strabismus. Br J Ophthalmol. 1935. V. 19. P. 148-151.
  92. Hamm L.M., Black J., Dai S., Thompson B. Global processing in amblyopia: a review. Front Psychol. 2014. V. 5. Article 583. P. 1-21.
  93. Herbison N., Cobb S., Gregson R., Ash I., Eastgate R., Purdy J., Hepburn T., MacKeith D., Foss A. Interactive binocular treatment (I-BiT) for amblyopia: results of a pilot study of 3D shutter glasses system. Eye (London, England). 2013. V. 27(9). P. 1077–1083. https://doi.org/10.1038/eye.2013.113
  94. Hess R.F., Thompson B., Black J.M., Machara G., Zhang P., Bobier W.R., Cooperstock J. An iPod treatment for amblyopia: An updated binocular approach. Optometry. 2012. V. 83 P. 88–94. https://doi.org/10.1016/j.optm.2011.08.013
  95. Hess R.F., Mansouri B., Thompson B. A new binocular approach to the treatment of amblyopia in adults well beyond the critical period of visual development. Restor Neurol Neurosci. 2010. V. 28. P. 793-802. https://doi.org/10.3233/RNN-2010-0550
  96. Hess R.F., Thompson B., Gole G., Mullen K.T. Deficient response from the lateral geniculate nucleus in humans with amblyopia. The European Journal of Neuroscience. 2009. V. 29(5). P. 1064-1070. https://doi.org/10.1111/j.1460-9568.2009.06650.x
  97. Holmes J.M., Manh V.M., Lazar E.L. et al. Effect of a binocular iPad game vs part-time patching in children aged 5 to 12 years with amblyopia: a randomized clinical trial. JAMA Ophthalmol. 2016. V. 134. P. 1391-1400. https://doi.org/10.1001/jamaophthalmol.2016.4262
  98. Hubel D.H., Wiesel T.N. Brain mechanisms of vision. Scientific American. 1979. V. 241. P. 150-162.
  99. Joly O., Frankó E. Neuroimaging of amblyopia and binocular vision: A review. Frontiers in Integrative Neuroscience. 2014. V. 8. Article 62. https://doi.org/10.3389/fnint.2014.00062
  100. Kelly K.R., Jost R.M., Dao L., Beauchamp C.L., Leffler J.N., Birch E.E. Binocular iPad game vs patching in children. A Randomized Clinical Trial. JAMA Ophthalmol. 2016. V. 134(12). P. 1402-1408. https://doi.org/10.1001/jamaophthalmol.2016.4224
  101. Koc I., Bagheri S., Chau R. K., Hoyek S., Shousha N.A., Mahmoudinezhad G., Falcone M.M., Oke I., Hunter D.G., Patel N.A. Cost-effectiveness Analysis of Digital Therapeutics for Amblyopia. Ophthalmology. 2025. V. 132(6). P. 654–660. https://doi.org/10.1016/j.ophtha.2024.12.037
  102. Kononov V.M., Podugolnikova T.A., Rozhkova G.I. Improvement of binocular vision by means of interactive software. Perception. 2006. V. 35. Suppl. P. 171-172.
  103. Kulp M.T., Cotter S.A., Connor A.J., Clarke M.P. Should amblyopia be treated? Ophthalmic Physiol Opt. 2014. V. 34(2). P. 226. https://doi.org/10.1111/opo.12124
  104. Lang, J.I., Lang, T.J. Eye Screening with the Lang Stereotest. American Orthoptic Journal. 1988. V. 38(1). P. 48–50. https://doi.org/10.1080/0065955X.1988.11981769
  105. Leffler C.T., Vaziri K., Schwartz S.G., Cavuoto K.M., McKeown C.A., Kishor K.S., Janot A.C. Rates of reopreration and abnormal binocularity following strabismus surgery in children. Am J Ophthalmol. 2016. V. 162. P. 159-166. https://doi.org/10.1016/j.ajo.2015.10.022
  106. Levi D. Visual processing in amblyopia: Human studies. Strabismus. 2006. V. 14(1). P. 11–19. https://doi.org/10.1080/09273970500536243
  107. Levi D.M., Li R.W. Perceptual learning as a potential treatment of amblyopia: a mini-review. Vision Res. 2009; V. 49(21). P. 2535-2549. https://doi.org/10.1016/j.visres.2009.02.010
  108. Levi D.M., Knill D.C., Bavelier D. Stereopsis and amblyopia: A mini-review. Vision Research. 2015. 114. P. 17–30. https://doi.org/10.1016/j.visres.2015.01.002
  109. Levi D.M. Rethinking Amblyopia 2020. Vision Res. 2020. V. 176. P. 118-129. https://doi.org/10.1016/j.visres.2020.07.014
  110. Li J., Thompson B., Deng D., Chan L.Y., Yu M., Hess R.F. Dichoptic training enables the adult amblyopic brain to learn. Current Biology. 2013. V. 23(8). P. R308–R309. https://doi.org/10.1016/j.cub.2013.01.059
  111. Li S.L., Jost R.M., Morale S.E., Stager D.R., Dao L., Stager D., Birch E.E. A binocular iPad treatment for amblyopic children. Eye (Lond). 2014. V. 28. P. 1246-1253. https://doi.org/10.1038/eye.2014.165
  112. Loudon S.E, Simonsz H.J. The history of the treatment of amblyopia. Strabismus. 2005. V. 13. P. 93-106. https://doi.org/10.1080/09273970590949818
  113. Manh V.M., Holmes J.M., Lazar E.L., Kraker R.T., Wallace D.K., Kulp M.T., Galvin J.A., Shah B.K., Davis P.L. A randomized trial of a binocular iPad game versus part-time patching in children aged 13 to16 years with amblyopia. Am. J. Ophthalmol. 2018. V. 186. P. 104-115. https://doi.org/10.1016/j.ajo.2017.11.017.
  114. Mallah K. El., Chakravarthy U., Hart P.M. Amblyopia: is visual loss permanent? Br J Ophthalmol. 2000. V. 84(9). P. 944-945. https://doi.org/10.1136/bjo.84.9.952
  115. Mendola J.D., Ian P., Conner I.P., Roy A., Chan S-T., Schwartz T.L., Odom J.V., Kwong K.K. Voxel-Based Analysis of MRI Detects Abnormal Visual Cortex in Children and Adults With Amblyopia. Human Brain Mapping. 2005. V. 25(2). P. 222–236. https://doi.org/10.1002/hbm.20109.
  116. Mendola J.D., Lam J., Rosenstein M., Lewis L.B., Shmuel A. Partial correlation analysis reveals abnormal retinotopically organized functional connectivity of visual areas in amblyopia. Neuroimage Clin. 2018. V. 18. P. 192-201. https://doi.org/10.1016/j.nicl.2018.01.022.
  117. Miki A., Liu G.T., Goldsmith Z.G., Liu C.-S.J., Haselgrove J.C. Decreased activation of the lateral geniculate nucleus in a patient with anisometric amblyopia demonstrated by magnetic resonance imaging. Opththalmologia. 2003. V. 217 (5). P. 365-369. https://doi.org/10.1159/000071353.
  118. Newsham D. Parental non-concordance with occlusion therapy. Br. J. Ophthalmol. 2000. V. 84(9). P. 957-962.
  119. Noah S., Bayliss J., Vedamurthy I., Nahum M., Levi, D., Bavelier D. Comparing dichoptic action video game play to patching in adults with amblyopia. Journal of vision. 2014. V. 14(10). P. 691-691. https://doi.org/10.1167/14.10.691
  120. Obukhov A., Kutimova E., Matrosova J., Teselkin D., Shilcin M. Medical VR Simulator for Pediatric Strabismus Treatment. Technologies. 2024. V. 12. P. 228. https://doi.org/10.3390/technologies12110228
  121. Pediatric Eye Disease Investigator Group. A comparison of atropine and patching treatments for moderate amblyopia by patient age, cause of amblyopia, depth of amblyopia, and other factors. Ophthalmology. 2003. V. 110 (8). P. 1632-1637. https://doi.org/10.1016/S0161-6420(03)00500-1
  122. Pediatric Eye Disease Investigator Group. A randomized trial of near versus distance activities while patching for amblyopiain children aged 3 to less than 7 years. Ophthalmology. 2008а. V. 115(11). P. 2071-2078. https://doi.org/10.1016/j.ophtha.2008.06.031.
  123. Pediatric Eye Disease Investigator Group. Patching vs Atropine to Treat Amblyopia in Children Aged 7 to 12 Years: A Randomized Trial. Arch Ophthalmol. 2008б. V. 126(12). P. 1634–1642. doi: 10.1001/archophthalmol.2008b.107
  124. Pediatric Eye Disease Investigator Group. A randomized trial of atropine vs. patching for treatment of moderate amblyopiain children. Arch Ophthalmol. 2002. V. 120(3). P. 268-278. https://doi.org/10.1001/archopht.120.3.268
  125. Pediatric Eye Disease Investigator Group. Pharmacological plus optical penalization treatment for amblyopia: results of a randomized trial. Arch Ophthalmol. 2009. V. 127(1). P. 22-30. https://doi.org/10.1001/archophthalmol.2008.520
  126. Pineles S.L., Aakalu V.K., Hutchinson A.K., Galvin J.A., Heidary G., Binenbaum G., VanderVeen D.K., Lambert S.R. Binocular treatment of amblyopia: a report by the American Academy of Ophthalmology. Ophthalmology. 2020. V. 127(2). P. 261-272. https://doi.org/10.1016/j.ophtha.2019.08.024
  127. Podugolnikova T.A., Rozhkova G.I. Restoration and improvement of stereovision by means of learning to perceive random-dot stereograms. Perception. 1998. V. 27 (Suppl.). P. 164.
  128. Polat U., Ma-Naim T., Belkin M., Sagi D. Improving vision in adult amblyopia by perceptual learning. Proc. Natl. Acad. Sci. U.S.A. 2004. V. 101(17). P. 6692-6697.https://doi.org/10.1073/pnas.0401200101
  129. Qiu F., Wang L., Liu Y., Yu L. Interactive binocular amblyopia treatment system with full-field vision based on virtual reality. 1st International Conference on Bioinformatics and Biomedical Engineering, Wuhan. China. 2007. P. 1257-1260. https://doi.org/10.1109/ICBBE.2007.324
  130. Repka M.X., Lum F., Burugapalli B. Strabismus, strabismus surgery, and reoperation rate in the United States from the IRIS Registry. Ophthalmology. 2018. V. 125(10). P. 1646-1653. https://doi.org/10.1016/j.ophtha.2018.04.024
  131. Repka M.X., Kraker R.T., Beck R.W., Birch E., Cotter S.A., Holmes J.M., Hertle R.W., Hoover D.L. et al. Treatment of severe amblyopia with weekend atropine: results from 2 randomized clinical trials. J AAPOS. 2009. V. 13(3). P. 258-263. https://doi.org/10.1016/j.jaapos.2009.03.002
  132. Rozhkova G.I., Podugolnikova T.A., Vasiljeva N.N. Visual acuity in 5-7-year-old children: individual variability and dependence on observation distance. Ophthal. Physiol. Opt. 2005. V. 25: 66-80.
  133. Sloper J. Answers and Questions about the Digital Dichoptic Treatment of Amblyopia. Ophthalmology. 2022. V. 129(1). P. 86. https://doi.org/10.1016/j.ophtha.2021.08.015
  134. Taylor V., Bossi M., Greenwood J.A., Dahimann-Noor A. Childhood amblyopia: current management and new trends. Br Med Bull. 2016. V. 119(1). P. 75-86. https://doi.org/10.1093/bmb/ldw030
  135. To L., Thompson B., Blum J.R., Maehara G., Hess R.F., Cooperstock J.R. A game platform for treatment of amblyopia. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2011. V. 19(3). P. 280–289.
  136. Vaschenko D.I., Rozhkova G.I. Dynamics of visual acuity in schoolchildren. Perception. 1998. V. 27 (Suppl.). P. 203.
  137. Vedamurthy I., Nahum M., Huang S.J., Zheng F., Bayliss J., Bavelier D., Levi D.M. A dichoptic custom-made action video game as a treatment for adult amblyopia. Vision Res. 2015. V. 114. P. 173-187. https://doi.org/10.1016/j.visres.2015.04.008
  138. Vitali A., Facoetti G., Gargantini A. An environment for contrast-based treatment of amblyopia using 3D technology. IEEE 2013 International Conference on Virtual Rehabilitation (ICVR). 2013. P. 76-79. https://doi.org/10.1109/ICVR.2013.6662073
  139. Waddingham P.E., Butler T.K.H., Cobb S.V., Moody A.D.R., Comaish I.F., Haworth S.M., Gregson R.M., Ash I.M., Brown S.M., Eastgate R.M., Griffiths G.D. Preliminary results from the use of the novel Interactive Binocular Treatment (I-BITTM) system, in the treatment of strabismic and anisometropic amblyopia. Eye. 2006. V. 20. P. 375-378. https://doi.org/10.1038/sj.eye.6701883
  140. Wade N.J. Natural Historians. Perception. 2008. V. 37(4). P. 479-482. https://doi.org/10.1068/p3704ed
  141. Wang H., Liang M., Crewther S.G., Yin Z., Wang J., Crewther D.P., Yu T. Functional deficits and structural changes associated with visual attention network during resting state in adult strabismic and anisotropic amblyopes. Frontiers in Human Neuroscience. 2022. V. 16. Article 862703. https://doi.org/10.3389/fnhum.2022.862703
  142. Webber A.L. Wood J. Amblyopia: prevalence, natural history, functional effects and treatment. Clinical and Experimental Optometry. 2005. V. 88(6). P. 365–375.
  143. Wei H., H. Zhao H., Dong F., Saleh G., X. Ye, and G. Clapworthy. A cross-platform approach to the treatment of ambylopia. IEEE 13th International Conference on Bioinformatics and Bioengineering (BIBE). 2013. P. 1–4.
  144. Wolfe J.M. Stereopsis and binocular rivalry. Psychol Rev. 1986. V. 93(3). P. 262-282.
  145. Wolfe J.M., Held R. A purely binocular mechanism in human vision. Vision Res. 1981. V. 21(12). P. 1755-1759. https://doi.org/10.1016/0042-6989(81)90208-X
  146. Wolfe J.M., Held R. Binocular adaptation that cannot be measured monocularly. Perception. 1982. V. 11(3). P. 287-295.
  147. Wolfe J.M., Held R. Shared characteristics of stereopsis and the purely binocular process. Vision Res. 1983. V. 23(3). P. 217-227. https://doi.org/10.1016/0042-6989(83)90110-4
  148. Wolfe J.M., Owens D.A. Evidence for separable binocular processes differentially affected by artificial anisometropia. Amer. J. Optometry and Physiol. Opt. 1979. V. 56(5). P. 276-284.
  149. Xiao J.X., Xie S., Ye J.T., Liu H.H., Gan X.L., Gong G.L., Jiang X.X. Detection of abnormal visual cortex in children with amblyopia by voxel-based morphometry. Am J Ophthalmol. 2007. V. 143(3). P. 489-493. https://doi.org/10.1016/j.ajo.2006.11.039
  150. Xiao S., Angjeli E., Wu H.C., Gaier E.D., Gomez S., Travers D.A., Binenbaum G., Langer R., Hunter D.G., Repka M.X. Randomized Controlled Trial of a Dichoptic Digital Therapeutic for Amblyopia. Ophthalmology. 2022. V. 129(1). P. 77-85. https://doi.org/10.1016/j.ophtha.2021.09.001.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schemes of orientation of the visual and optical axes of the eyes in divergent (a) and convergent (b) imaginary strabismus. f – fovea; p – posterior pole of the eye; asterisk – object of attention (bifixation point). The visual and geometric axes are depicted by solid and dash-dotted lines, respectively.

Baixar (369KB)
3. Fig. 2. Illustration of detection and assessment of heterophoria (latent strabismus) using ICP (explanation of the procedure in the text). H is the horizontal alignment error, V is the vertical alignment error.

Baixar (330KB)
4. Fig. 3. Explanation of the work with the CHIBIS program and its prototype – the KLASS program. The use of automatically regulated illumination of objects encoded by binocular disparity in the image for the amblyopic eye in order to stimulate its participation in the formation of binocular stereo images. The left column shows the silhouettes of objects (a and g) encoded in the STS with different element sizes (b, c and d, e) and presented without illumination (b and d) and with illumination (c and e). The patient views the images through red-blue glasses with a red filter for the amblyopic eye and a blue filter for the better eye, so that the illumination is visible only to the amblyopic eye.

Baixar (1MB)
5. Fig. 4. Dynamics of development of the ability to perceive purely binocular test objects using the “illumination” procedure from the KLASS program (a, b, c, d – data from four patients). The abscissa axis shows the numbers of treatment sessions, and the ordinate axis shows the assessment of the result of each session in points.

Baixar (345KB)
6. Fig. 5. Illustration of the effectiveness of training according to the CLASS program using the example of treating two patients using only this program (explanations in the text). Explanation of the letter designations: OD, OS – right eye, left eye; Visus – visual acuity; OAS and SAS – objective and subjective angles of strabismus based on measurements on the synoptophore, Dev – angle of strabismus according to the Hirschberg scheme; CTC_1 and CTC_2 – results of assessing the presence of global stereopsis mechanisms and its strength based on the “Backlight” and “Darkening” procedures.

Baixar (827KB)
7. Fig. 6. Example of objects presented at the beginning of a treatment session (a) and a graphic protocol of work on eliminating functional scotoma using the ICP BLADE (b) in an adult patient (26 years old). The areas outlined with different lines correspond to assessments of the sizes of functional scotoma at successive stages of treatment – at the end of the first, three intermediate and last sessions. During the last session, the scotoma was eliminated; this result is marked with a cross in the center of the visual field.

Baixar (398KB)
8. Fig. 7. Measuring stereo perception thresholds using the “StereoThreshold” program. a – examples of tests for measuring stereo perception thresholds; b – the type of picture perceived in stereo glasses. The blue color indicates the virtual protrusion of the object from the screen; c – the results of evaluating stereo thresholds using anaglyph and polarization separation methods.

Baixar (313KB)
9. Fig. 8. Demonstration of the influence of separation methods on the measurement of fusion reserves. Individual ratios of convergent (a) and divergent (b) fusion reserve estimates obtained using color (horizontal axis) and polarization (vertical axis) separation.

Baixar (476KB)
10. Fig. 9. Results of precise assessment of visual acuity of both eyes in 8 children aged 4 to 7 years before and after treatment using the computer program FLOWER. Sorted by increasing initial visual acuity of the right eye of patients (green columns); initial values of visual acuity of the left eye are gray columns. Improvement in visual acuity as a result of training is indicated by the corresponding colored contours. The data are taken from the article (Podugolnikova, 2012), with abbreviation and re-sorting.

Baixar (271KB)
11. Fig. 10. Distribution of patients with strabismus and/or amblyopia (105 children aged 3–10 years) by the number of binocular vision indicators improved as a result of treatment using the CLASS program during its testing.

Baixar (236KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025