Dynamics and Energy of Combustion of Ultra-Lean Mixtures of Hydrogen with Air in a Limited Volume

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, the combustion dynamics inside a closed volume filled with pre-mixed hydrogen-air mixtures with a composition close to the lower flammability limit is investigated based on a detailed numerical analysis. A comparison of flame evolution features is made depending on the initiation mechanism: a point ignition source or continuous heat supply from a heated region on the reactor wall. It is shown that with point ignition, the completeness of hydrogen combustion is significantly lower than with heat supply from the wall. It is also found that, despite the low chemical activity of ultra-lean hydrogen-air mixtures, the combustion process has a positive balance between the energy release during chemical reactions and the heat supplied to the reactor from the heated wall.

Texto integral

Acesso é fechado

Sobre autores

I. Yakovenko

Joint Institute for High Temperatures of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: yakovenko.ivan@bk.ru
Rússia, Moscow

A. Kiverin

Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: yakovenko.ivan@bk.ru
Rússia, Moscow

K. Melnikova

Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: yakovenko.ivan@bk.ru
Rússia, Moscow

Bibliografia

  1. Makhviladze G.M., Yakush S.E. // Proc. Comb. Inst. 2002. V. 29. P. 195. https://doi.org/10.1016/S1540-7489(02)80028-1
  2. Ciccarelli G., Dorofeev S. // Prog. Energy Combust. Sci. 2008. V. 34(4). P. 499.
  3. Lovachev L.A. // Combust. Sci. Technol. 1978. V. 18. P. 153. https://doi.org/10.1080/00102207808946847
  4. Ronney P.D. // Combust. and Flame. 1990. V. 82. P. 1. https://doi.org/10.1016/0010-2180(90)90074-2
  5. Shoshin Y., van Oijen J., Sepman A., de Goey L. // Proc. Comb. Inst. 2011. V. 33. P. 1211. https://doi.org/10.1016/j.proci.2010.06.030
  6. Coward H.F., Jones G.W. Limits of flammability of gases and vapors. Bulletin 503, US Bureau of Mines, 1952
  7. Levy A. // Proc. R. Soc. A. 1965. V. 283. P. 134. https://doi.org/10.1098/rspa.1965.0011
  8. Babkin V.S., V’yun A.V. // Combust. Explos. Shock Waves (Engl. Transl.) 1976. V. 12. P. 196. https://doi.org/10.1007/BF00744886
  9. Babkin V.S., Zamashchikov V.V., Badalyan A.M. et al. // Combust., Explos. Shock Waves (Engl. Transl.) 1982. V. 18. P. 164. https://doi.org/10.1007/BF00789613
  10. Volodin V.V., Golub V.V., Kiverin A.D. et. al. // Combust. Sci. Technol. 2020. V. 193. № 2. P. 225. https://doi.org/10.1080/00102202.2020.1748606
  11. Yakovenko I., Kiverin A., Melnikova K. // Fluids. 2021. V. 6. P. 21. https://doi.org/10.3390/fluids6010021
  12. Carmel M.K., Experimental results pertaining to the performance of thermal igniters / NUREG/CR-5079; SAND-87-3139. Nuclear Regulatory Commission, Washington, DC (USA). Div. of Engineering and Systems Technology; Sandia National Labs., Albuquerque, NM, USA, 1989.
  13. Yakovenko I., Melnikova K., Kiverin A. // Acta Astronaut. 2024. V. 225. P. 218. https://doi.org/10.1016/j.actaastro.2024.09.013
  14. Kuo K. Principles of combustion. 2nd ed. Hoboken, New Jersey: Wiley-Inter- science; 2005. ISBN 0-471-04689-2.
  15. Rehm R.G., Baum H.R. // J. Res. Natl. Bur. Stand. (U. S.). 1978. V. 83. Issue 3. P. 297.
  16. McGrattan K., McDermott R., Hostikka S., et.al. Fire Dynamics Simulator Technical Reference Guide V. 1: Mathematical Model, Tech. Rep. NIST Special Publication 1018-1, U.S. Department of Commerce, National Institute of Standards and Technology. Gaithersburg, MD, 2019. https://doi.org/10.6028/NIST.SP.1018.
  17. NRG computational package for reactive flows modeling. https://github.com/yakovenko-ivan/NRG
  18. Yakovenko I., Kiverin A. // Fire. 2023. V. 6. P. 23. https://doi.org/10.3390/fire6060239
  19. Bykov V., Kiverin A., Koksharov A., Yakovenko I. // Comput. Fluids. 2019. V. 194. P. 104310.
  20. Keromnes A., Metcalfe W.K., Heufer K.A., et.al. // Combust. and Flame. 2013. V. 160. № 6. P. 995. https://doi.org/10.1016/j.combustflame.2013.01.001
  21. Lovachev L.A. // Ibid. 1976. V. 27. P. 125. https://doi.org/10.1016/0010-2180(76)90012-2
  22. Buckmaster J. // Combust. Sci. Technol. 1992. V. 84. P. 163. https://doi.org/10.1080/00102209208951851
  23. Tereza A.M., Agafonov G.L., Anderzhanov E. K. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 4. P. 974. https://doi.org/10.1134/S1990793123040309
  24. Tereza A.M., Agafonov G.L., Anderzhanov E.K. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 4. P. 1294. https://doi.org/10.1134/S1990793123060246
  25. Tereza A.M., Agafonov G.L., Anderzhanov E.K. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. P.965. https://doi.org/10.1134/S1990793124700416
  26. Tereza A.M., Agafonov G.L., Anderzhanov E.K. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 2. P. 425. https://doi.org/10.1134/S1990793123020173

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Problem formulation: a - variant of ignition from a point source; b - variant of ignition from a hot spot on the lower end of the chamber.

Baixar (1MB)
3. Fig. 2. Chronology of the evolution of the combustion centre in a 6% hydrogen-air mixture initiated by a point source at times 20 (a), 60 (b), 100 (c), 140 (d), 180 (e) and 220 ms (f).

Baixar (3MB)
4. Fig. 3. Chronology of the evolution of the combustion centre in a mixture of 6% hydrogen with air initiated by a heated surface at Rspot = 3.2 mm, Tspot = 2000 K at times 20 (a), 60 (b), 100 (c), 140 (d), 180 (e) and 220 ms (f).

Baixar (3MB)
5. Fig. 4. a - Time dependence of the ratio of the current hydrogen mass m(H2) in the reactor to the initial hydrogen mass m0(H2) in per cent. Thin dashed lines - linear interpolation at the stage of cone-shaped flame; b - graphs of change of energy release due to chemical reactions, Er, and heat absorption, Ec, due to conductive heat exchange with reactor walls.

Baixar (990KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025