Evoked responses to the cyclic sound motion

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This work aims to study the event-related potentials (ERPs) during the cyclic movement of sound stimuli and to choose the optimal model for neuronal coding of azimuthal motion. The ERPs elicited by the cyclic motion of sound stimuli were investigated under conditions of dichotic stimulation. Stepwise or linear motion patterns were created by cyclic changes in the interaural time difference (ITD), which changed by 800 μs, and then returned to its initial value. Statistically significant ERPs were evoked by the motion onset and by the repeated changes of direction (sound turns) only in the case of a stepwise ITD pattern. The amplitude of the responses consistently depended on the angular position of the turning points relative to the head midline. These results support a two-channel model for encoding spatial information in the auditory cortex. ERPs evoked by motion offset indicated that spatial attention and sensory memory were involved in the preconscious perception of cyclic motion.

全文:

受限制的访问

作者简介

L. Shestopalova

Pavlov Institute of Physiology, RAS

编辑信件的主要联系方式.
Email: shestopalovalb@infran.ru
俄罗斯联邦, Saint-Petersburg

Е. Petropavlovskaia

Pavlov Institute of Physiology, RAS

Email: shestopalovalb@infran.ru
俄罗斯联邦, Saint-Petersburg

P. Letyagin

Pavlov Institute of Physiology, RAS

Email: shestopalovalb@infran.ru
俄罗斯联邦, Saint-Petersburg

D. Salikova

Pavlov Institute of Physiology, RAS

Email: shestopalovalb@infran.ru
俄罗斯联邦, Saint-Petersburg

参考

  1. Семенова В.В., Шестопалова Л.Б., Петропавловская Е.А., Никитин Н.И. Константы восприятия отсроченного движения звуковых стимулов. Успехи физиологических наук. 2020. 51 (2): 55–67.
  2. Шестопалова Л.Б., Петропавловская Е.А. Негативность рассогласования и пространственный слух. Успехи физиологических наук. 2019. 50 (3): 14.
  3. Шестопалова Л.Б., Саликова Д.А., Петропавловская Е.А. Слуховое последействие: влияние неподвижного адаптера на восприятие движущегося стимула. ЖВНД. 2023. 73 (2): 256–270.
  4. Шестопалова Л.Б., Петропавловская Е.А., Саликова Д.А., Летягин П.И. Воспринимаемые траектории циклического движения звуковых образов. Сенсорные системы. 2024a. 38 (3): 51–62.
  5. Шестопалова Л.Б., Петропавловская Е.А., Саликова Д.А., Летягин П.И. Локализация точек поворота при ритмическом движении звукового образа. Физиология человека. 2024b. 50 (5): 3–12. doi: 10.31857/S0131164624050015.
  6. Шестопалова Л.Б., Семенова В.В., Петропавловская Е.А. Вызванный ответ мозга человека на начало движения звука (motion-onset response). Успехи физиологических наук. 2024c. 55 (3): 22–44.
  7. Akeroyd M.A. A binaural beat constructed from a noise. J. Acoust. Soc. Am. 2010. 128: 3301.
  8. Basu S., Banerjee B. Potential of binaural beats intervention for improving memory and attention: insights from meta-analysis and systematic review. Psychol. Res. 2022. https://doi.org/10.1007/s00426-022-01706-7.
  9. Beauchene C., Abaid N., Moran R., Diana R.A., Leonessa A. The effect of binaural beats on visuospatial working memory and cortical connectivity. PLoS ONE. 2016. 11 (11): e0166630.
  10. Beauchene C., Abaid N., Moran R., Diana R.A., Leonessa A. The effect of binaural beats on verbal working memory and cortical connectivity. J. Neural Engineering. 2017. 14 (2): 026014. https://doi.org/10.1088/1741-2552/aa5d67.
  11. Briley P.M., Goman A.M., Summerfield A.Q. Physiological evidence for a midline spatial channel in human auditory cortex. J. Assoc. Res. Otolaryngol. 2016. 17 (4): 331-40.
  12. Briley P.M., Kitterick P.T., Summerfield A.Q. Evidence for opponent process analysis of sound source location in humans. J. Assoc. Res. Otolaryngol. 2013. 14: 83–101.
  13. Briley P.M., Summerfield A.Q. Age-related deterioration of the representation of space in human auditory cortex. Neurobiol. Aging. 2014. 35: 633–644.
  14. Carlile S., Leung J. The perception of auditory motion. Trends Hear. 2016. 20: 1–19.
  15. Delorme A., Sejnowski T., Makeig S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage. 2007. 34 (4): 1443–1449.
  16. Dingle R.N, Hall S.E, Phillips D.P. A midline azimuthal channel in human spatial hearing. Hear. Res. 2010. 268: 67–74.
  17. Dingle R.N, Hall S.E, Phillips D.P. The three-channel model of sound localization mechanisms: interaural level differences. J. Acoust. Soc. Am. 2012. 131: 4023–4029.
  18. Féron F.X., Frissen I., Boissinot, J. Guastavino C. Upper limits of auditory rotational motion perception. J. Acoust. Soc. Am. 2010. 128: 3703–3714.
  19. Gao X., Cao H., Ming D., Qi H., Wang X., Wang X., Chen R., Zhou P. Analysis of EEG activity in response to binaural beats with different frequencies. Int. J. Psychophysiol. 2014. 94 (3): 399–406.
  20. Garcia-Argibay M., Santed M.A., Reales J.M. Efficacy of binaural auditory beats in cognition, anxiety, and pain perception: a meta-analysis. Psychol. Res. 2019. 83 (2): 357–372.
  21. Getzmann S. Auditory motion perception: onset position and motion direction are encoded in discrete processing stages. Eur. J. Neurosci. 2011. 33 (7): 1339–50.
  22. Getzmann S. Effect of auditory motion velocity on reaction time and cortical processes. Neuropsychologia. 2009. 47 (12): 2625–2633.
  23. Getzmann S. Effects of velocity and motion-onset delay on detection and discrimination of sound motion. Hearing Research. 2008. 246: 44–51.
  24. Getzmann S., Lewald J. Effects of natural versus artificial spatial cues on electrophysiological correlates of auditory motion. Hear. Res. 2010. 259 (1-2): 44–54.
  25. Grantham D.W., Wigцццhtman F.L. Detectability of varying interaural temporal differences. J. Acoust. Soc. Am. 1978. 63: 511.
  26. Grantham D.W., Wightman F.L. Detectability of varying interaural temporal differences. J. Acoust. Soc. Am. 1978. 63 (2): 511–523.
  27. Ioannou C.I., Pereda E., Lindsen J.P., Bhattacharya J. Electrical brain responses to an auditory illusion and the impact of musical expertise. PLoS ONE. 2015. 10 (6): e0129486.
  28. Joris Х., Smith P.H., Yin T.C. Coincidence detection in the auditory system: 50 years after Jeffress. Neuron. 1998. 21: 1235–1238.
  29. Licklider J.C.R., Webster J.C., Hedlun J.M. On the frequency limits of binaural beats. J. Acoust. Soc. Am. 1950. 22: 468–473.
  30. López-Caballero F., Escera C. Binaural Beat: A Failure to Enhance EEG Power and Emotional Arousal. Front. Hum. Neurosci. 2017. 11: 557.
  31. Lüddemann H., Kollmeier B., Riedel H. Electrophysiological and psychophysical asymmetries in sensitivity to interaural correlation gaps and implications for binaural integration time. Hear. Res. 2016. 332: 170–187.
  32. Lüddemann H., Riedel H., Kollmeier B. Asymmetries in electrophysiological and psychophysical sensitivity to interaural correlation steps. Hear. Res. 2009. 256: 39–57.
  33. Magezi D.A., Krumbholz K. Evidence for opponent-channel coding of interaural time differences in human auditory cortex. J. Neurophysiol. 2010. 104: 1997–2007.
  34. McLaughlin S.A., Higgins N.C., Stecker G.C. Tuning to binaural cues in human auditory cortex. J. Assoc. Res. Otolaryngol. 2016. 17: 37–53.
  35. Perrott D.R., Musicant A.D. Minimum audible movement angle: Binaural localization of moving sound sources. J. Acoust. Soc. Am. 1977. 62 (6): 1463.
  36. Perrott D.R., Musicant A.D. Rotating tones and binaural beats. J. Acoust. Soc. Am. 1977. 61 (5): 1288–1292.
  37. Phillips D.P., Hall S.E. Psychophysical evidence for adaptation of central auditory processors for interaural differences in time and level. Hearing Research. 2005. 202: 188–199.
  38. Pratt H., Starr A., Michalewski H.J., Dimitrijevic A., Bleich N., Mittelman N. Cortical evoked potentials to an auditory illusion: binaural beats. //Clin. Neurophysiol. 2009. 120: 1514–1524.
  39. Salminen N.H., Tiitinen H., May P.J.C. Auditory spatial processing in the human cortex. Neuroscientist. 2012. 18 (6): 602–12.
  40. Salminen N.H., May P.J.C., Alku P., Tiitinen H. A population rate code of auditory space in the human cortex. PLoS One. 2009. 4: e7600.
  41. Senna I., Parise C.V., Ernst M.O. Hearing in slow motion: Humans underestimate the speed of moving sounds. Sci. Rep. 2015. 5: 14054.
  42. Shestopalova L.B., Petropavlovskaia E.A., Salikova D.A., Semenova V.V. Temporal integration of sound motion: Motion-onset response and perception. Hear. Res. 2024. 441: 108922.
  43. Trapeau R., Schönwiesner M. Adaptation to shifted interaural time differences changes encoding of sound location in human auditory cortex. NeuroImage. 2015. 118: 26–38.
  44. Ungan P., Yagcioglu S., Ayik E. Event-related potentials to single-cycle binaural beats and diotic amplitude modulation of a tone. Exp. Brain Res. 2019a. 237: 1931–1945.
  45. Ungan P., Yagcioglu S., Ayik E. Event-related potentials to single-cycle binaural beats of a pure tone, a click train, and a noise. Exp. Brain Res. 2019b. 237 (11): 2811–828.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Stimuli with linear and stepwise patterns of ITD change. (а) – temporal structure of dichotic stimuli. The vertical axis represents the ITD changes. The horizontal axis shows the temporal structure of stimulation. The black and gray lines show the step and linear ITD patterns, respectively. “H” and “K” denote the beginning and end of linear ITD changes; “Д” and “Б” – the far and close turning points relative to the sound’s onset and offset position. (б) – calculated angular position of the motion trajectories. Semicircles with scales represent the subjective auditory space. Zero corresponds to the head midline, ±90 deg to the ears. The squared beginnings of the arrows show the calculated sound’s onset and offset position, as well as the position of Б1-Б7 points. The arrowheads show the calculated position of Д1-Д8 points.

下载 (97KB)
3. Fig. 2. Examples of group-mean ERPs (n = 22) to stationary and moving sound stimuli, averaged over 24 frontocentral electrodes. Y axis: the ERP amplitude (μV), negativity upward. X-axis: time (ms). (а) – ERP evoked by the stationary central stimulus. (б) – ERP evoked by the stimulus with linear pattern. (в) – ERP evoked by the stimulus with a stepwise pattern. Stationary segments of moving stimuli and Б1-Б7 points were located near the head midline (0 deg), Д1-Д8 points were near the left ear (-90 deg). Dotted lines are the timepoints of the auditory events throughout the epoch. The events are indicated by letters, as in Fig. 1.

下载 (180KB)
4. Fig. 3. Group-averaged ERPs (n = 22) evoked by far and close sound turns in three angular positions (0, 45, 90 deg) with stepwise and linear ITD patterns. Y-axis: the ERP amplitude. Negativity upward. X-axis: time. «Ступ Д» and «Ступ Д» denote ERPs to the far and close sound turns with a stepwise ITD pattern; «Лин Д» and «Лин Б» denote ERPs to a linear pattern. The topograms above the ERPs correspond to the peak latency of N1 waves, while those under the ERPs correspond to the peak latency of P2 waves. The left and right pairs of topograms show the responses to the close and far turns, respectively. The arrows show the direction of sound motion from the corresponding turning point.

下载 (401KB)
5. Fig. 4. Group-averaged ERPs (n = 22) evoked by motion onset and offset in three positions (0, 45, 90 deg), for the stimuli with a linear and stepwise ITD pattern. X and Y axes are the same as in Fig.3. «Ступ Н» and «Ступ К» denote the ERPs to the onset and offset of motion with a stepwise pattern; «Лин Н» and «Лин К» denote those with a linear pattern. The topograms above the ERPs correspond to the peak latency of N1 waves, while those under the ERPs correspond to the peak latency of P2 waves. The arrows show the direction of sound motion. The signal’s position at the motion onset is indicated by the beginning of the arrow, while that at the motion offset is indicated by the arrowhead. The left and right pairs of topograms correspond to the responses to the motion onset and offset, respectively.

下载 (367KB)

版权所有 © Russian Academy of Sciences, 2025