EKSPERIMENTAL'NAYa REALIZATsIYa KVAZISVOBODNOGO GRAFENA NA PODLOZhKE SiC(0001) S INTERKALIROVANNYMI SLOYaMI Au I Co
- Авторлар: Rybkina A.A.1, Gogina A.A.1, Likholetova M.V.1, Pudikov D.A.1, Koroleva A.V.1, Lyzhova P.D.1, Eryzhenkov A.V.1, Grigor'ev E.A.1, Rybkin A.G.1
-
Мекемелер:
- Санкт-Петербургский государственный университет
- Шығарылым: Том 167, № 4 (2025)
- Беттер: 517–527
- Бөлім: SOLIDS AND LIQUIDS
- URL: https://bioethicsjournal.ru/0044-4510/article/view/683840
- DOI: https://doi.org/10.31857/S0044451025040066
- ID: 683840
Дәйексөз келтіру
Аннотация
Авторлар туралы
A. Rybkina
Санкт-Петербургский государственный университет
Email: a.rybkina@spbu.ru
Санкт-Петербург, Россия
A. Gogina
Санкт-Петербургский государственный университетСанкт-Петербург, Россия
M. Likholetova
Санкт-Петербургский государственный университетСанкт-Петербург, Россия
D. Pudikov
Санкт-Петербургский государственный университетСанкт-Петербург, Россия
A. Koroleva
Санкт-Петербургский государственный университетСанкт-Петербург, Россия
P. Lyzhova
Санкт-Петербургский государственный университетСанкт-Петербург, Россия
A. Eryzhenkov
Санкт-Петербургский государственный университетСанкт-Петербург, Россия
E. Grigor'ev
Санкт-Петербургский государственный университетСанкт-Петербург, Россия
A. Rybkin
Санкт-Петербургский государственный университетСанкт-Петербург, Россия
Әдебиет тізімі
- M. Ramezani, J.-H. Kim, X. Liu, et al., High-Density Transparent Graphene Arrays for Predicting Cellular Calcium Activity at Depth from Surface Potential Recordings, Nature Nanotechnology 19, 504 (2024).
- V. T. Phong, N. R. Walet, and F. Guinea, Effective Interactions in a Graphene Layer Induced by the Proximity to a Ferromagnet, 2D Materials 5, 014004 (2017).
- C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett. 95, 226801 (2005).
- F. D. M. Haldane, Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly", Phys. Rev. Lett. 61, 2015 (1988).
- Z. Qiao, S. A. Yang, W. Feng et al., Quantum Anomalous Hall Effect in Graphene from Rashba and Exchange Effects, Phys. Rev. B 82, 161414 (2010).
- M. Offidani and A. Ferreira, Anomalous Hall Effect in 2D Dirac Materials, Phys. Rev. Lett. 121, 126802 (2018).
- H. Takenaka, S. Sandhoefner, A. A. Kovalev, and E. Y. Tsymbal, Magnetoelectric Control of Topological Phases in Graphene, Phys. Rev. B 100, 125156 (2019).
- P. Bampoulis, C. Castenmiller, D. J. Klaassen et al., Quantum Spin Hall States and Topological Phase Transition in Germanene, Phys. Rev. Lett. 130, 196401 (2023).
- Z. Lu, T. Han, Y. Yao et al., Fractional Quantum Anomalous Hall Effect in Multilayer Graphene, Nature 626, 759 (2024).
- Y. S. Dedkov, M. Fonin, U. R¨udiger, and C. Laubschat, Rashba Effect in the Graphene/Ni(111) System, Phys. Rev. Lett. 100, 107602 (2008).
- A. G. Rybkin, A. A. Rybkina, M. M. Otrokov et al., Magneto-Spin–Orbit Graphene: Interplay Between Exchange and Spin–Orbit Couplings, Nano Lett. 18, 1564 (2018).
- A. G. Rybkin, A. V. Tarasov, A. A. Rybkina et al., Sublattice Ferrimagnetism in Quasifreestanding Graphene, Phys. Rev. Lett. 129, 226401 (2022).
- A. V. Eryzhenkov, A. V. Tarasov, A. M. Shikin, and A. G. Rybkin, Non-Trivial Band Topology Criteria for Magneto-Spin–Orbit Graphene, Symmetry 15(2), 516 (2023).
- B. Mu˜niz Cano, A. Gud´in, J. S´anchez-Barriga et al., Rashba-Like Spin Textures in Graphene Promoted by Ferromagnet-Mediated Electronic Hybridization With a Heavy Metal, ACS Nano 18, 15716 (2024).
- H. Yang, A. D. Vu, A. Hallal et al., Anatomy and Giant Enhancement of the Perpendicular Magnetic Anisotropy of Cobalt–Graphene Heterostructures, Nano Lett. 16, 145 (2016).
- A. D. Vu, J. Coraux, G. Chen et al., Unconventional Magnetisation Texture in Graphene/Cobalt Hybrids, Sci. Rep. 6, 24783 (2016).
- O. Rader, A. Varykhalov, J. S´anchez-Barriga et al., Is There a Rashba Effect in Graphene on 3d Ferromagnets?, Phys. Rev. Lett. 102, 057602 (2009).
- K. V. Emtsev, A. A. Zakharov, C. Coletti et al., Ambipolar Doping in Quasifree Epitaxial Graphene on SiC(0001) Controlled by Ge Intercalation, Phys. Rev. B 84, 125423 (2011).
- S. Forti, A. St¨ohr, A. A. Zakharov et al., Mini-Dirac Cones in the Band Structure of a Copper Intercalated Epitaxial Graphene Superlattice, 2D Materials 3, 035003 (2016).
- S. Forti, S. Link, A. St¨ohr et al., Semiconductor to Metal Transition in Two-Dimensional Gold and its van der Waals Heterostack with Graphene, Nat. Commun. 11, 2236 (2020).
- A. A. Rybkina, S. O. Filnov, A. V. Tarasov et al., Quasi-Freestanding Graphene on SiC(0001) via Cobalt Intercalation of Zero-Layer Graphene, Phys. Rev. B 104, 155423 (2021).
- A. A. Rybkina, A. A. Gogina, A. V. Tarasov et al., Origin of Giant Rashba Effect in Graphene on Pt/SiC, Symmetry 15(11), 2052 (2023).
- P. Weinert, J. Hochhaus, L. Kesper et al., Structural, Chemical, and Magnetic Investigation of a Graphene/Cobalt/Platinum Multilayer System on Silicon Carbide, Nanotechnology 35, 165702 (2024).
- A. A. Gogina, A. A. Rybkina, X. Ye et al., Gold Intercalation of Different 6H-SiC (0001) Surface Reconstructions, Mater. Chem. Phys. 323, 129612 (2024).
- А. А. Яковлев, Дис....канд. физ.-мат. наук Структура и свойства поверхностных реконструкций Si(111)√3 × √3-Bi и Si(111)√3 × √3-Au, модифицированных атомами металлов, Институт автоматики и процессов управления ДВО РАН, Владивосток (2016).
- A. Kovtun, D. Jones, S. Dell’Elce et al., Accurate Chemical Analysis of Oxygenated Graphene-Based Materials Using X-ray Photoelectron Spectroscopy, Carbon 143, 268 (2019).
- P. M. T. M. van Attekum and G. K. Wertheim, Excitonic Effects in Core-Hole Screening, Phys. Rev. Lett. 43, 1896 (1979).
- D.-Q. Yang and E. Sacher, Carbon 1s X-ray Photoemission Line Shape Analysis of Highly Oriented Pyrolytic Graphite: the Influence of Structural Damage on Peak Asymmetry, Langmuir 22, 860 (2006).
- C. Riedl, U. Starke, J. Bernhardt et al., Structural Properties of the Graphene-SiC(0001) Interface as a Key for the Preparation of Homogeneous LargeTerrace Graphene Surfaces, Phys. Rev. B 76, 245406 (2007).
- C. Riedl, C. Coletti, and U. Starke, Structural and Electronic Properties of Epitaxial Graphene on SiC(0001): a Review of Growth, Characterization, Transfer Doping and Hydrogen Intercalation, J. Phys. D: Appl. Phys. 43, 374009 (2010).
- P. M˚artensson, F. Owman, and L. I. Johansson, Morphology, Atomic and Electronic Structure of 6HSiC(0001) Surfaces, Phys. Stat. Solidi (b) 202(1), 501 (1997).
- U. Starke and C. Riedl, Epitaxial Graphene on SiC(0001) and SiC(0001): from Surface Reconstructions to Carbon Electronics, J. Phys.: Condens. Matter 21, 134016 (2009).
- A. G. Rybkin, A. V. Tarasov, A. A. Gogina et al., Устойчивый ферримагнетизм в квазисвободном графене, Письма в ЖЭТФ 117, 626 (2023).
- A. G. Rybkin, A. A. Rybkina, A. V. Tarasov et al., A New Approach for Synthesis of Epitaxial NanoThin Pt5Gd Alloy via Intercalation Underneath a Graphene, Appl. Surf. Sci. 526, 146687 (2020).
- K. V. Emtsev, F. Speck, T. Seyller et al., Interaction, Growth, and Ordering of Epitaxial Graphene on SiC{0001} Surfaces: A Comparative Photoelectron Spectroscopy Study, Phys. Rev. B 77, 155303 (2008).
- C. Riedl, C. Coletti, T. Iwasaki et al., Quasi-Free-Standing Epitaxial Graphene on SiC Obtained by Hydrogen Intercalation, Phys. Rev. Lett. 103, 246804 (2009).
- C. Riedl, A. Zakharov, and U. Starke, Precise In Situ Thickness Analysis of Epitaxial Graphene Layers on SiC(0001) Using Low-Energy Electron Diffraction and Angle Resolved Ultraviolet Photoelectron Spectroscopy, Appl. Phys. Lett. 93(3), 033106 (2008).
- M. Mucha-Kruczy´nski, O. Tsyplyatyev, A. Grishin et al., Characterization of Graphene through Anisotropy of Constant-Energy Maps in Angle-Resolved Photoemission, Phys. Rev. B 77, 195403 (2008).
- B. Song, H. Bao, H. Li et al., Observation of Glassy Ferromagnetism in Al-Doped 4H-SiC, J. Am. Chem. Soc. 131, 1376 (2008).
- Y. Wang, L. Li, S. Prucnal et al., Disentangling Defect-Induced Ferromagnetism in SiC, Phys. Rev. B 89, 014417 (2014).
- S. O. Filnov, D. A. Estyunin, I. I. Klimovskikh et al., Room Temperature Ferromagnetism in Graphene/SiC(0001) System Intercalated by Fe and Co, Phys. Stat. Solidi: Rap. Res. Lett. 18(3), 2300336 (2024).
- S. Filnov, D. Estyunin, I. Klimovskikh et al., Cовместная интеркаляция ультратонких пленок Fe и Co под буферный слой графена на монокристалле SiC(0001), Письма в ЖЭТФ 117(5), 369 (2023).
Қосымша файлдар
