Thermal evolution and crystal structure features of Cs2SO4 and Cs2Ca3(SO4)4 sulfates

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For the first time, the thermal expansion of two modifications of α- and β-Cs2SO4, as well as the compound Cs2Ca3(SO4)4, was studied by the high-temperature powder X-ray diffraction method in the temperature ranges of 25–960 and 25–540°C, respectively. β-Cs2SO4 transforms into the high-temperature α-Cs2(SO4) modification through a two-phase region – in the range of 600–750°C. The thermal expansion of all the studied phases is sharply anisotropic: αa = 37.3(10), αb = 36.2(4), αc = 12(5), αV = 85.1(5) at 30°C for β-Cs2SO4; αa = 55(5), αc = 115(9), αV = 224(12) ∙ 10–6 °С–1 at 750°С for α-Cs2SO4. The thermal expansion coefficients for Cs2Ca3(SO4)4 are: α11 = 18.8(5), αb = 18.2(5), α33 = –7.5(2), αβ = –10.6(2), αV = 29.6(9) ∙ 10–6 °С–1 at 25°С. The inheritance of the polymorphic transformation of Cs2SO4 is shown, consisting in the fact that with an increase in temperature, the corrugated columns or rods elongated along the c axis in both modifications, consisting of Cs(SO4)6 microblocks, straighten due to the rotation of SO4 tetrahedra. The interpretation of the anisotropy of the thermal expansion of Cs2Ca3(SO4)4 is based on the mechanism of rocking polyhedra, a hinge deformation at the level of Ca(SO4)6 microblocks is revealed, leading to a large negative thermal expansion in the α33 direction.

全文:

受限制的访问

作者简介

A. Shablinskii

Petersburg Nuclear Physics Institute named by B.P.Konstantinov; St. Petersburg Electrotechnical University

编辑信件的主要联系方式.
Email: shablinskii.andrey@mail.ru

National Research Center «Kurchatov Institute», Petersburg Nuclear Physics Institute named by B.P.Konstantinov, Grebenchikov Institute of Silicate Chemistry

俄罗斯联邦, Makarova Emb. 2, 199034, St. Petersburg; Prof. Popova Str. 5, 197022, St. Petersburg

S. Demina

Petersburg Nuclear Physics Institute named by B.P.Konstantinov

Email: shablinskii.andrey@mail.ru

National Research Center «Kurchatov Institute», Grebenchikov Institute of Silicate Chemistry

俄罗斯联邦, Makarova Emb. 2, 199034, St. Petersburg

Y. Biryukov

Petersburg Nuclear Physics Institute named by B.P.Konstantinov

Email: shablinskii.andrey@mail.ru

National Research Center «Kurchatov Institute», Grebenchikov Institute of Silicate Chemistry

俄罗斯联邦, Makarova Emb. 2, 199034, St. Petersburg

R. Bubnova

Petersburg Nuclear Physics Institute named by B.P.Konstantinov

Email: shablinskii.andrey@mail.ru

National Research Center «Kurchatov Institute», Grebenchikov Institute of Silicate Chemistry

俄罗斯联邦, Makarova Emb. 2, 199034, St. Petersburg

M. Krzhizhanovskaya

Petersburg Nuclear Physics Institute named by B.P.Konstantinov; St. Petersburg State University

Email: shablinskii.andrey@mail.ru

National Research Center «Kurchatov Institute», Petersburg Nuclear Physics Institute named by B.P.Konstantinov, Grebenchikov Institute of Silicate Chemistry

俄罗斯联邦, Makarova Emb. 2, 199034, St. Petersburg; University Emb. 7/9, 199034, St. Petersburg

S. Filatov

St. Petersburg State University

Email: shablinskii.andrey@mail.ru
俄罗斯联邦, University Emb. 7/9, 199034, St. Petersburg

参考

  1. Wu C., Wu T.H., Jiang X.X. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 4138. https://doi.org/10.1021/jacs.1c00416
  2. Yang F., Huang L., Zhao X. et al. // J. Mater. Chem. C. 2019. V. 7. P. 8131. https://doi.org/10.1039/C9TC02180A
  3. Dong X., Huang L., Hu C. et al. // Angew. Chem. 2019. V. 131. P. 6598. https://doi.org/10.1002/ange.201900637
  4. Chen K.C., Yang Y., Peng G. et al. // J. Mater. Chem. C. 2019. V. 7. P. 9900. https://doi.org/10.1039/C9TC03105G
  5. Li Y., Liang F., Zhao S. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 3833. https://doi.org/10.1021/jacs.9b00138
  6. Tang H.X., Zhang Y.X., Zhuo C. et al. // Angew. Chem. 2019. V. 58. P. 3824. https://doi.org/10.1002/anie.201813122
  7. Mary T.A., Evans J.S.O., Vogt T. et al. // Science. 1996. V. 272. P. 90. https://doi.org/10.1126/science.272.5258.90
  8. Takenaka K. // Front. Chem. 2018. V. 6. P. 267. https://doi.org/10.3389/fchem.2018.00267
  9. Dang P., Yun X., Zhang Q. et al. // Light Sci. Appl. 2021. V. 10. P. 29. https://doi.org/10.1038/s41377-021-00469-x
  10. Wang M., Wei M., Liang L. et al. // Inorg. Chem. Commun. 2019. V. 107. 107486.
  11. Fang P., Tang W., Shen Y. et al. // Crystals. 2022. V. 12. 126. https://doi.org/10.3390/cryst12020126
  12. Ogg A. // Philos. Mag. 1928. V. 5. P. 354. https://doi.org/10.1080/14786440208564474
  13. Taylor W., Boyer T. // Mem. Proc. Manchester. 1928. V. 72. P. 125.
  14. Nord A.G. // Acta Chem. Scan. B. 1976. V. 30. P. 198. https://doi.org/10.3891/acta.chem.scand.30a-0198
  15. Weber H.J., Schulz M., Schmitz S. et al. // J. Phys.: Condens. Matter. 1989. V. 1. P. 8543. https://doi.org/10.1088/0953-8984/1/44/025
  16. Tutton A.E. // Philos. Trans. Royal Soc. A. 1899. V. 192. P. 350. https://doi.org/10.1098/rspl.1898.0112
  17. Haussuhl V.S. // Acta Cryst. 1965. V. 18. P. 839.
  18. Плющев В.Е. // Журн. неорган. химии. 1962. Т. 66. С. 1377.
  19. Levin E.M., Benedict J.T., Sciarello J.P. et al. // J. Am. Ceram. Soc. 1973. V. 56. № 8. P. 427.
  20. Fischmeister H.F. // Monatsh. Chem. 1962. V. 93. P. 420. https://doi.org/10.1007/BF00903139
  21. Sasaki A., Akihiro H., Hisashi K. et al. // Rigaku J. 2010. V. 26. Р. 10.
  22. Бубнова Р.С., Фирсова В.А., Волков С.Н. и др. // Физика и химия стекла. 2018. Т. 44. № 1. С. 48.
  23. Naruse H., Tanaka K., Morikawa H. et al. // Acta Cryst. В. 1987. V. 43. P. 143. https://doi.org/10.1107/S010876818709815X
  24. Arnold H., Kurtz W., Richter-Zinnius A. et al. // Acta Cryst. B. 1981. V. 37. P. 1643. https://doi.org/10.1107/S0567740881006808
  25. Воронков А.А., Илюхин В.В., Белов Н.В. // Кристаллография. 1975. Т. 20. Вып. 3. С. 556.
  26. Филатов С.К. Высокотемпературная кристаллохимия. Л.: Недра, 1990. 288 с.
  27. Shablinskii A.P., Filatov S.K., Biryukov Y.P. // Phys. Chem. Miner. 2023. V. 50. P. 30. https://doi.org/10.1007/s00269-023-01253-6
  28. Филатов С.К. // Зап. Всесоюз. минерал. о-ва. 1982. Т. 111. № 4. С. 674.
  29. Filatov S.K., Andrianova L.V., Bubnova R.S. // Cryst. Res. Technol. 1984. V. 19. № 4. P. 563. https://doi.org/10.1002/crat.2170190421
  30. Sleight A.W. // Inorg. Chem. 1998. V. 37. № 12. Р. 2854. https://doi.org/10.1021/ic980253h
  31. Sleight A.W. // Endeavour. 1995. V. 19. № 2. P. 64. https://doi.org/10.1016/0160-9327(95)93586-4

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Diffraction pattern of a homogeneous sample of Cs2Ca3(SO4)4 (1) in comparison with the theoretical diffraction pattern (2), calculated according to the data of [11], the difference curve (3) is shown.

下载 (224KB)
3. Fig. 2. Thermal phase transformation (polymorphic transition) of Cs2SO4. The horizontal dashed lines show the two-phase region.

下载 (93KB)
4. Fig. 3. Dependence of the parameters and volume of the elementary cell of Cs2SO4 on temperature. The two-phase region is indicated by vertical dashed lines.

下载 (202KB)
5. Fig. 4. Two-dimensional picture of the thermal X-ray experiment of Cs2Ca3(SO4)4 (a). Asterisks mark some peaks, presumably of the high-temperature polymorph of Cs2Ca3(SO4)4. Dependence of the parameters and volume of the unit cell of Cs2Ca3(SO4)4 on temperature (b). Behind the dashed line is a two-phase region.

下载 (393KB)
6. Fig. 5. Comparison of sections of the thermal expansion tensor with the crystal structure of Cs2Ca3(SO4)4 in projections ab, ac and bc. Small balls are O atoms. Shaded areas in sections of the thermal expansion tensor figure indicate areas with negative expansion.

下载 (706KB)
7. Fig. 6. Cs–O polyhedra in the crystal structure of β-Cs2SO4.

下载 (94KB)
8. Fig. 7. Fundamental structural units (microblocks) of Cs(SO4)6 in the crystal structure of β-Cs2SO4.

下载 (131KB)
9. Fig. 8. Comparison of the thermal expansion tensor figure with the crystal structures of Cs2SO4. Single-color balls represent the positions of O atoms, and two-color balls represent partially occupied positions of O atoms.

下载 (655KB)
10. Fig. 9. Interpretation of the anisotropy of thermal expansion of Cs2Ca3(SO4)4 up to sharply negative thermal expansion: a – crystal structure of Cs2Ca3(SO4)4, b – microblocks connected in columns through the vertices of octahedra and common SO4 tetrahedra, c – microblocks connected to each other by three tetrahedra, d – layers consisting of microblocks, d – connection of layers through microblocks connected to each other by three tetrahedra, e – figure of the thermal expansion tensor (the toroidal region is positive, and the dumbbell-shaped region is negative), compared with Fig. d. Large and small balls denote Cs and O atoms, respectively, SO4 tetrahedra and CaO6 octahedra are shown.

下载 (515KB)
11. Fig. 10. Schematic representation of a hinge at the microblock level (rocking polyhedra). Octahedrons and tetrahedra are shown, d1, d2, d3 and d4 are the dimensions of these structural units in different directions. Obtuse angles increase, and acute angles decrease. The shaded areas in the cross-section of the thermal expansion tensor figure indicate areas with negative thermal expansion.

下载 (225KB)

版权所有 © Russian Academy of Sciences, 2025