Spectral and photochemical properties of dipyrenylcyclobutanes formed in the [2+2]-photocycloaddition reaction from biphotochromic dyads
- Autores: Budyka M.F.1, Li V.M.1, Gavrishova T.N.1
-
Afiliações:
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS
- Edição: Volume 59, Nº 1 (2025)
- Páginas: 26-38
- Seção: ФОТОХИМИЯ
- URL: https://bioethicsjournal.ru/0023-1193/article/view/684666
- DOI: https://doi.org/10.31857/S0023119325010048
- EDN: https://elibrary.ru/SPMLKY
- ID: 684666
Citar
Resumo
The properties of dipyrenylcyclobutanes CB10 and CBoX, which are products of the [2+2]-photocycloaddition reaction (PCA) of the corresponding biphotochromic dyads D10 and DoX, have been studied. The absorption and fluorescence spectra of cyclobutane CBoX revealed the presence of different types of pyrene substituents, with strong and weak interactions in the ground S0 and excited S1 states. In both cyclobutanes, energy transfer (ET) from the pyrenyl substituents to the cyclobutane rings is observed, initiating the cyclobutane opening reaction (retro-PCA), which occurs via a predissociation mechanism. The photochromic pair “D10-CB10” is an example of a new type of photochrome operating by the mechanism of the PCA reaction and can function as a two-channel color-correlated fluorescent photoswitch.
Palavras-chave
Sobre autores
M. Budyka
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS
Autor responsável pela correspondência
Email: budyka@icp.ac.ru
Rússia, Chernogolovka
V. Li
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS
Email: budyka@icp.ac.ru
Rússia, Chernogolovka
T. Gavrishova
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS
Email: budyka@icp.ac.ru
Rússia, Chernogolovka
Bibliografia
- Kirkus M., Janssen R.A.J., Meskers S.C.J. // J. Phys. Chem. A. 2013. V. 17. P. 4828.
- Margulies E.A., Shoer L.E., Eaton S.W., Wasielewski M.R. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 23735.
- Long S., Wang Y., Vdovic S., Zhou M., Yan L., Niu Y. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 18567.
- Cho D.W., Fujitsuka M., Sugimoto A., Majima T. // J. Phys. Chem. A. 2008. V. 112. P. 7208.
- Wang S., Bohnsack M., Megow S., Renth F., Temps F. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 2080.
- Kucukoz B., Adinarayana B., Osuka A., Albinsson B. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 16477.
- Letrun R., Lang B., Yushchenko O., Wilcken R., Svechkarev D., Kolodieznyi D. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 30219.
- Chahal M.K., Liyanage A., Gobeze H.B., Payne D.T., Ariga K., Hill J.P., D’Souza F. // Chem. Commun. 2020. V. 56. P. 3855.
- Liang C.K., Desvergne J.P., Bassani D.M. // Photochem. Photobiol. Sci. 2014. V. 13. P. 316.
- Perrier A., Maurel F., Jacquemin D. // Acc. Chem. Res. 2012. V. 45. P. 1173.
- Doddi S., Ramakrishna B., Venkatesha Y., Bangl P.R. // RSC Adv. 2015. V. 5. P. 56855.
- Kim D., Park S.Y. // Optical Mater. 2018. P. 1800678.
- Szacilowski K. // Chem. Rev. 2008. V. 108. P. 3481.
- Будыка М.Ф. // Успехи химии. 2017. Т. 86. С. 181.
- Andreasson J., Pischel U. // Coord. Chem. Rev. 2021. V. 429. P. 213695.
- Будыка М.Ф., Поташова Н.И., Гавришова Т.Н., Ли В.М., Гак В.Ю., Гринева И.А. // Химия высоких энергий. 2018. Т. 52. С. 204.
- Будыка М.Ф., Ли В.М., Гавришова Т.Н. // Химия высоких энергий. 2024. Т. 58, С. 77.
- Budyka M.F., Fedulova J.A., Gavrishova T.N., Li V.M., Potashova N.I., Tovstun S.A. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 24137
- Bera S., Bera A., Banerjee D. // Org. Lett. 2020. V. 22. P. 6458.
- Sahu K.B., Ghosh S., Banerjee M., Maity A., Mondal S., Paira R. et al. // Med. Chem. Res. 2013. V. 22. P. 94.
- Будыка М.Ф., Гавришова Т.Н., Ли В.М., Дозморов С.А. // Изв. АН. Сер.хим. 2023. Т. 72. С. 2013.
- Winnik F.M. // Chem. Rev. 1993. V. 93. P. 587.
- Siu H., Duhamel J. // J. Phys. Chem. B. 2008. V. 112. P. 15301.
- Seixas de Melo J., Costa T., Francisco A., Macanita A.L., Gago S., Goncalves I.S. // Phys. Chem. Chem. Phys. 2007. V. 9. P. 1370.
- Dong D.C., Winnik M.A. // Photochem. Photobiol. 1982. V. 35. P. 17.
- Seixas de Melo J., Costa T., Miguel M.G., Lindman B., Schillen K. // J. Phys. Chem. B. 2003. V. 107. P. 12605.
- Pomerantsev A.L., Chemometrics in Excel. Hoboken, John Wiley & Sons Inc., 2014.
- Fischer E. // J. Phys. Chem. 1967. V. 71. P. 3704.
- Perrier A., Maurel F., Jacquemin D. // Acc. Chem. Res. 2012. V. 45. P. 1173.
- Budyka M.F., Gavrishova T.N., Li V.M., Tovstun S.A. // Spectr. Acta Part A. 2024. V. 320. P. 124666.
- Braslavsky S.E., Fron E., Rodriguez H.B., Roman E.S., Scholes G.D., Schweitzer G. et al. // Photochem. Photobiol. Sci. 2008. V. 7. P. 1444.
- Chung J.W., You Y., Huh H.S., An B.K., Yoon S.J., Kim S.H. et al. // J. Am. Chem. Soc. 2009. V.131. P. 8163.
Arquivos suplementares
