Spectral and photochemical properties of dipyrenylcyclobutanes formed in the [2+2]-photocycloaddition reaction from biphotochromic dyads

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The properties of dipyrenylcyclobutanes CB10 and CBoX, which are products of the [2+2]-photocycloaddition reaction (PCA) of the corresponding biphotochromic dyads D10 and DoX, have been studied. The absorption and fluorescence spectra of cyclobutane CBoX revealed the presence of different types of pyrene substituents, with strong and weak interactions in the ground S0 and excited S1 states. In both cyclobutanes, energy transfer (ET) from the pyrenyl substituents to the cyclobutane rings is observed, initiating the cyclobutane opening reaction (retro-PCA), which occurs via a predissociation mechanism. The photochromic pair “D10-CB10 is an example of a new type of photochrome operating by the mechanism of the PCA reaction and can function as a two-channel color-correlated fluorescent photoswitch.

Sobre autores

M. Budyka

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS

Autor responsável pela correspondência
Email: budyka@icp.ac.ru
Rússia, Chernogolovka

V. Li

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: budyka@icp.ac.ru
Rússia, Chernogolovka

T. Gavrishova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: budyka@icp.ac.ru
Rússia, Chernogolovka

Bibliografia

  1. Kirkus M., Janssen R.A.J., Meskers S.C.J. // J. Phys. Chem. A. 2013. V. 17. P. 4828.
  2. Margulies E.A., Shoer L.E., Eaton S.W., Wasielewski M.R. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 23735.
  3. Long S., Wang Y., Vdovic S., Zhou M., Yan L., Niu Y. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 18567.
  4. Cho D.W., Fujitsuka M., Sugimoto A., Majima T. // J. Phys. Chem. A. 2008. V. 112. P. 7208.
  5. Wang S., Bohnsack M., Megow S., Renth F., Temps F. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 2080.
  6. Kucukoz B., Adinarayana B., Osuka A., Albinsson B. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 16477.
  7. Letrun R., Lang B., Yushchenko O., Wilcken R., Svechkarev D., Kolodieznyi D. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 30219.
  8. Chahal M.K., Liyanage A., Gobeze H.B., Payne D.T., Ariga K., Hill J.P., D’Souza F. // Chem. Commun. 2020. V. 56. P. 3855.
  9. Liang C.K., Desvergne J.P., Bassani D.M. // Photochem. Photobiol. Sci. 2014. V. 13. P. 316.
  10. Perrier A., Maurel F., Jacquemin D. // Acc. Chem. Res. 2012. V. 45. P. 1173.
  11. Doddi S., Ramakrishna B., Venkatesha Y., Bangl P.R. // RSC Adv. 2015. V. 5. P. 56855.
  12. Kim D., Park S.Y. // Optical Mater. 2018. P. 1800678.
  13. Szacilowski K. // Chem. Rev. 2008. V. 108. P. 3481.
  14. Будыка М.Ф. // Успехи химии. 2017. Т. 86. С. 181.
  15. Andreasson J., Pischel U. // Coord. Chem. Rev. 2021. V. 429. P. 213695.
  16. Будыка М.Ф., Поташова Н.И., Гавришова Т.Н., Ли В.М., Гак В.Ю., Гринева И.А. // Химия высоких энергий. 2018. Т. 52. С. 204.
  17. Будыка М.Ф., Ли В.М., Гавришова Т.Н. // Химия высоких энергий. 2024. Т. 58, С. 77.
  18. Budyka M.F., Fedulova J.A., Gavrishova T.N., Li V.M., Potashova N.I., Tovstun S.A. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 24137
  19. Bera S., Bera A., Banerjee D. // Org. Lett. 2020. V. 22. P. 6458.
  20. Sahu K.B., Ghosh S., Banerjee M., Maity A., Mondal S., Paira R. et al. // Med. Chem. Res. 2013. V. 22. P. 94.
  21. Будыка М.Ф., Гавришова Т.Н., Ли В.М., Дозморов С.А. // Изв. АН. Сер.хим. 2023. Т. 72. С. 2013.
  22. Winnik F.M. // Chem. Rev. 1993. V. 93. P. 587.
  23. Siu H., Duhamel J. // J. Phys. Chem. B. 2008. V. 112. P. 15301.
  24. Seixas de Melo J., Costa T., Francisco A., Macanita A.L., Gago S., Goncalves I.S. // Phys. Chem. Chem. Phys. 2007. V. 9. P. 1370.
  25. Dong D.C., Winnik M.A. // Photochem. Photobiol. 1982. V. 35. P. 17.
  26. Seixas de Melo J., Costa T., Miguel M.G., Lindman B., Schillen K. // J. Phys. Chem. B. 2003. V. 107. P. 12605.
  27. Pomerantsev A.L., Chemometrics in Excel. Hoboken, John Wiley & Sons Inc., 2014.
  28. Fischer E. // J. Phys. Chem. 1967. V. 71. P. 3704.
  29. Perrier A., Maurel F., Jacquemin D. // Acc. Chem. Res. 2012. V. 45. P. 1173.
  30. Budyka M.F., Gavrishova T.N., Li V.M., Tovstun S.A. // Spectr. Acta Part A. 2024. V. 320. P. 124666.
  31. Braslavsky S.E., Fron E., Rodriguez H.B., Roman E.S., Scholes G.D., Schweitzer G. et al. // Photochem. Photobiol. Sci. 2008. V. 7. P. 1444.
  32. Chung J.W., You Y., Huh H.S., An B.K., Yoon S.J., Kim S.H. et al. // J. Am. Chem. Soc. 2009. V.131. P. 8163.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025