35-year cycle in solar activity in 1000−1900
- Autores: Ptitsyna N.G.1, Demina I.М.1
-
Afiliações:
- Pushkov Institute of Terrestrial Magnetism, the Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences
- Edição: Volume 65, Nº 2 (2025)
- Páginas: 278-293
- Seção: Articles
- URL: https://bioethicsjournal.ru/0016-7940/article/view/683637
- DOI: https://doi.org/10.31857/S0016794025020116
- EDN: https://elibrary.ru/CYQJTB
- ID: 683637
Citar
Resumo
We performed a Fourier and wavelet analysis of solar activity in the range between the period of the Hoyle magnetic cycle (~22 years) and the Gleisberg cycle (50-120 years) in 1000-1900. Two reconstructions of the number of sunspots from indirect data were used based on: a) the number of low-latitude auroras and b) the concentration of 14C in tree rings. Our analysis showed that in the spectra of both reconstructions, there is a pronounced stable variation with a period of ~30-40 years, which is present even during grand minimums/maxima. The source of this variation is the frequency modulation by the Suess cycle with a period of ~200 years, resulting in a three-frequency structure with carrier oscillation with a period of ~35 years and sideband periods of ~30 and ~40 years. Some difference in the obtained spectra of the two reconstructions may be due to the different contribution of closed and open magnetic fields in the restoration of solar activity from different indirect data.
Texto integral

Sobre autores
N. Ptitsyna
Pushkov Institute of Terrestrial Magnetism, the Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences
Autor responsável pela correspondência
Email: nataliaptitsyna@yahoo.com
St. Petersburg Branch
Rússia, St. PetersburgI. Demina
Pushkov Institute of Terrestrial Magnetism, the Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences
Email: nataliaptitsyna@yahoo.com
St. Petersburg Branch
Rússia, St. PetersburgBibliografia
- Баскаков С.И. Радиотехнические цепи и сигналы. М.: Ленард, 528 с. 2016.
- Вальчук Т.Е., Лившиц М.А., Фельдштейн Я.И. Зондирование геомагнитным полем высокоширотного магнитного поля Солнца // Письма в Астрон. журн. Т. 4. № 11. С. 515–519. 1978.
- Витинский Ю.А., Копецкий М., Куклин Г.В. Статистика пятнообразовательной деятельности Солнца. М.: Наука, 296 с. 1986.
- Гоноровский И.С. Радиотехнические цепи и сигналы. М.: Советское радио, 608 с. 1977.
- Ланда П.С. Нелинейные колебания и волны. М.: Наука, 495 с. 1997.
- Наговицын Ю.А. Солнечная активность двух последних тысячелетий: “Служба Солнца” в древнем и средневековом Китае // Геомагнетизм и аэрономия. Т. 41. № 5. С. 711–720. 2001.
- Наговицын Ю.А. Изменения циклических характеристик магнитной активности Солнца на длительных временных шкалах // Геомагнетизм и аэрономия. Т. 54. № 6. С. 723–729. 2014. https://doi.org/10.7868/S0016794014060133
- Обридко В.Н., Канониди Х.Д., Митрофанова Т.А., Шельтинг Б.Д. Солнечная активность и геомагнитные возмущения // Геомагнетизм и аэрономия. Т. 53. № 2. С. 157–166. 2013. https://doi.org/10.7868/S0016794013010148
- Обридко В.Н., Наговицын Ю.А. Солнечная активность, цикличность и методы прогноза. СПб.: ВВМ, 466 c. 2017.
- Птицына Н.Г., Тясто М.И., Храпов Б.А. 22-летний цикл в частоте появления полярных сияний в XIX веке: широтные эффекты // Геомагнетизм и аэрономия. Т. 57. № 2. С. 208–216. 2017. https://doi.org/10.7868/S0016794017020110
- Птицына Н.Г., Демина И.М. Реконструкция солнечной активности в 1000–1700 гг. по данным о полярных сияниях с учетом вклада главного магнитного поля земли // Геомагнетизм и аэрономия. T. 60. № 4. С. 515−527. 2020. https://doi.org/10.31857/S0016794020030153
- Птицына Н.Г., Демина И.М. Частотная модуляция как причина возникновения дополнительных ветвей векового цикла Глейсберга в солнечной активности // Геомагнетизм и аэрономия. Т. 62. № 1. С. 52–66. 2022. https://doi.org/10.31857/S0016794022010163
- Птицына Н.Г., Демина И.М. Влияние цикла Глейсберга на вариации периода 11-летнего цикла солнечной активности в 1700–2021 гг. // Геомагнетизм и аэрономия. T. 63. № 3. С. 284–297. 2023. https://doi.org/10.31857/S0016794022600508
- Птицына Н.Г., Демина И.М. Солнечный цикл Швабе в 1000–1700 гг.: вариации длины и амплитуды // Геомагнетизм и аэрономия. T. 64. № 2. С. 217–229. 2024. https://doi.org/10.31857/S0016794024020059
- Bertello L., Pevtsov А.А., Ulrich Р.К. 70 years of chromospheric solar activity and dynamics // Astrophys. J. V. 897. № 2. P. 181–195. 2020. https://doi.org/10.3847/1538-4357/ab9746
- Brehm N., Bayliss A., Christl M. et al. Eleven-year solar cycles over the last millennium revealed by radiocarbon in tree rings // Nat. Geosci. V. 14. P. 10–15. 2021. https://doi.org/10.1038/s41561-020-00674-0
- Borovsky J.E., Denton M.H. Differences between CME-driven storms and CIR-driven storms // J. Geophys. Res. V. 111. № 7. ID A07S08. 2006. https://doi.org/10.1029/2005jA011447
- Bothmer V., Desai M.I., Marsden R.G., Sanderson T.R., Trattner K.J., Wenzel K.-P., Gosling J.T., Balogh A., Forsyth R.J., Goldstein B.E. ULYSSES observations of open and closed magnetic field lines within a coronal mass ejection // Astron. Astrophys. V. 316.№ 2. P. 493–498. 1996.
- Brückner E. Klimaschwankungen seit 1700. Wien, Olmütz: Ed. Hölzel, 325 p. 1890.
- Cliver E.W., Pötzi W., Veronig A.M. Large sunspot groups and great magnetic storms: Magnetic suppression of CMEs // Astrophys. J. V. 938. № 2. ID 136. 2022. https://doi.org/10.3847/1538-4357/ac847d
- Clilverd M.A., Clarke E., Ulich T., Rishbeth H., Martin J. Predicting solar cycle 24 and beyond // Space Weather. V. 4. № 9. ID S09005. 2006. https://doi.org/10.1029/2005SW000207
- Connor F.R. Modulation. London: Edward Arnold Ltd., 133 p. 1982.
- Daubechies I. Ten lectures on wavelets. Philadelphia, PA: Society for industrial and applied mathematics, 369 p. 1992. https://doi.org/10.1137/1.9781611970104
- Davies Е.Е, Scolini C., Winslow R.M., Jordan A.P., Möstl C. The effect of magnetic field line topology on ICME-related GCR Modulation // Astrophys. J. V. 959. № 2. ID 133. 2023. https://doi.org/10.3847/1538-4357/ad046a
- Echer E., Rigozo N.R., Nordemann D.J.R., Vieira L.E.A. Prediction of solar activity on the basis of spectral characteristics of sunspot number // Ann. Geophys. V. 22. № 6. P. 2239–2243. 2004. https://doi.org/10.5194/angeo-22-2239-2004
- Eddy J.A. The historical record of solar activity / The ancient sun: Fossil record in the earth, moon and meteorites / Proceedings of the Conference. Boulder. CO. October 16–19, 1979. (A81-48801 24-91). New York, Oxford: Pergamon Press. P. 119–134. 1980.
- Gonzalez W.D., Joselyn J.A., Kamide Y., Kroehl H.W., Rostoker G., Tsurutani B.T., Vasyliunas V.M. What is a geomagnetic storms? // J. Geophys. Res. V. 99. № 4. P. 5771–5792. 1994. https://doi.org/10.1029/93JA02867
- Grossmann A., Morlet J. Decomposition of Hardy functions of constant shape // SIAM J. Math. Anal. V. 15. № 4. P.723–736. 1984. https://doi.org/10.1137/0515056
- Gopalswamy N. The sun and space weather // Atmosphere. V. 13. № 11. ID 1781. 2022. https://doi.org/10.3390/atmos13111781
- Feynman J., Gabriel S.B. Period and phase of the 88-year solar cycle and the Maunder minimum: Evidence for a chaotic sun // Sol. Phys. V. 127. № 2. P. 393–403. 1990. https://doi.org/10.1007/BF00152176
- Feynman J., Ruzmaikin A. The Centennial Gleissberg Cycle and its association with extended minima // J. Geophys. Res. – Space. V. 119. № 8. P. 6027–6041. 2014. https://doi.org/10.1002/2013JA019478
- Kane R.P. Prediction of the sunspot maximum of solar cycle 23 by extrapolation of spectral components // Sol. Phys. V. 189. № 1. P. 217–224. 1999. https://doi.org/10.1023/A:1005298313886
- Keimatsu M., Fukushima N., Nagata T. Archaeo-aurora and geomagnetic secular variation in historic time // J. Geomagn. Geoelectr. V. 20. № 1. P. 45–50. 1968. https://doi.org/10.5636/jgg.20.45
- Kudsk S.G., Knudsen M.F., Karoff C., Baittinger C., Misios S., Olsen J. Solar variability between 650 CE and 1900 – Novel insights from a global compilation of new and existing high-resolution 14C records // Quaternary Sci. Rev. V. 292. ID 107617. 2022. https://doi.org/10.1016/j.quascirev.2022.107617
- Liritzis Y., Petropoulos B. Latitude dependence of auroral frequency in relation to solar-terrestrial and interplanetary parameters // Earth Moon Planets. V. 39. № 1. P. 75–91. 1987. https://doi.org/10.1007/BF00054435
- McCracken K.G., Beer J., Steinhilber F., Abreu J. A phenomenological study of the cosmic ray variations over the past 9400 years, and their implications regarding solar activity and the solar dynamo // Sol. Phys. V. 286. № 2. P. 609−627. 2013. https://doi.org/10.1007/s11207-013-0265-0
- Meng X., Tsurutani B.T., Mannucci A.J. The solar and interplanetary causes of superstorms (minimum Dst ≤ −250 nT) during the space age // J. Geophys. Res. V. 124. № 6. P. 3926–3948. 2019. https://doi.org/10.1029/2018JA026425
- Muscheler R., Joos F., Beer J., Müller S.A., Vonmoos M., Snowball I. Solar activity during the last 1000 yr inferred from radionuclide records // Quaternary Sci. Rev. 2006. V. 26. № 1–2. P. 82–97. 2006. https://doi.org/10.1016/j.quascirev.2006.07.012
- Peristykh A.N., Damon P.E. Persistence of the Gleissberg 88 year cycle over the last ~12,000 years: Evidence from cosmogenic isotope // J. Geophys. Res. − Space. V. 108. № 1. ID 1003. 2003. https://doi.org/10.1029/2002JA009390
- Petrovay K. Solar cycle prediction // Living Rev. Sol. Phys. V. 17. ID 2. 2020. https://doi.org/10.1007/s41116-020-0022-z
- Raspopov O.M., Shumilov O.I, Kasatkina EA, Turunen E., Lindtholm M. 35-year climatic Bruckner cycle – solar control of climate variability? / Proc. 1st Solar and Space weather Euroconference “The solar cycle and terrestrial climate”. Santa Cruz de Tenerife, Spain. September 25–29, 2000. Ed. A. Wilson. Noordwijk, Netherlands: ESA Publications Division. P. 517. 2000.
- Schove D.J. Aurora numbers since 500 B.C. // Journal of the British Astronomical Association. V.72. № 1. P. 31–35. 1962.
- Silverman S.M. Secular variation of the aurora for the past 500 years // Rev. Geophys. V. 30. № 4. P. 333–351. 1992. https://doi.org/10.1029/92RG01571
- Simon P.A., Legrand J.P. Solar cycle and geomagnetic activity: A review for geophysicists. Part II. The solar sources of geomagnetic activity and their links with sunspot cycle activity // Ann. Geophys. V. 7. № 6. P. 579–593. 1989.
- Siscoe G.L. Evidence in the auroral record for secular solar variability // Rev. Geophys. V. 18. № 3. P. 647–658. 1980. https://doi.org/10.1029/RG018i003p00647
- Singh Y.P., Badruddin B. Prominent short-, mid-, and long-term periodicities in solar and geomagnetic activity: Wavelet analysis // Planet. Space Sci. V. 96. P. 120–124. 2014. https://doi.org/10.1016/j.pss.2014.03.019
- Svalgaard L. Up to nine millennia of multimessenger solar activity // arXiv Preprint: 1810.11952. 2018. https://arxiv.org/ftp/arxiv/papers/1810/1810.11952.pdf
- Travers R., Usoskin I.G., Solanki S.K., Becagli S., Frezzetti M., Severi M., Stenni B., Udisti R. Nitrate in polar ice: a new tracer of solar variability // Sol. Phys. V. 280. № 1. P. 237–254. 2012. https://doi.org/10.1007/s11207-012-0060-3
- Tsurutani B., Gonzalez W., Gonzalez A.L.C. et al. Corotating solar wind streams and recurrent geomagnetic activity: a review // J. Geophys. Res. V. 111. № 7. ID A07S01. 2006. https://doi.org/10.1029/2005JA011273
- Usoskin I.G. A history of solar activity over millennia // Living Rev. Sol. Phys. V. 14. ID 3. 2017. https://doi.org/10.1007/s41116-017-0006-9
- Usoskin I.G., Solanki S.K., Kovaltsov G.A. Grand minima and maxima of solar activity: new observational constraints // Astron. Astrophys. V. 471. № 1. P. 301–309. 2007. https://doi.org/10.1051/0004-6361:20077704
- Usoskin I.G., Solanki S.K., Krivova N., Hofer B., Kovaltsov G.A., Wacker L., Brehm N., Kromer B. Solar cycle activity over the last millennium reconstructed from annual 14C data // Astron. Astrophys. V. 649. ID A141. 2021. https://doi.org/10.1051/0004-6361/202140711
- Vazquez M., Vaquero J.M., Gallego M.C. Long-term spatial and temporal variations of aurora borealis events in the period 1700–1905 // Sol. Phys. V. 289. № 5. P. 1843–1861. 2014. https://doi.org/10.1007/s11207-013-0413-6
- Veretenenko S., Ogurtsov M., Obridko V. Long-term variability in occurrence frequencies of magnetic storms with sudden and gradual commencements // J. Atmos. Sol.–Terr. Phy. V. 205. ID 105295. 2020. https://doi.org/10.1016/j.jastp.2020.105295
- Webb D.F., Crooker N.U., Plunkett S.P., St. Cyr O.C. The solar sources of geoeffective structures / Space Weather: Progress and Challenges in Research and Applications. Eds. P. Song, H.J. Singer, G. Siscoe / Geophysical Monograph Series. V. 125. Washington, DC: AGU. P. 123–141. 2001. https://doi.org/10.1029/GM125p0123
Arquivos suplementares
