35-year cycle in solar activity in 1000−1900

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We performed a Fourier and wavelet analysis of solar activity in the range between the period of the Hoyle magnetic cycle (~22 years) and the Gleisberg cycle (50-120 years) in 1000-1900. Two reconstructions of the number of sunspots from indirect data were used based on: a) the number of low-latitude auroras and b) the concentration of 14C in tree rings. Our analysis showed that in the spectra of both reconstructions, there is a pronounced stable variation with a period of ~30-40 years, which is present even during grand minimums/maxima. The source of this variation is the frequency modulation by the Suess cycle with a period of ~200 years, resulting in a three-frequency structure with carrier oscillation with a period of ~35 years and sideband periods of ~30 and ~40 years. Some difference in the obtained spectra of the two reconstructions may be due to the different contribution of closed and open magnetic fields in the restoration of solar activity from different indirect data.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Ptitsyna

Pushkov Institute of Terrestrial Magnetism, the Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: nataliaptitsyna@yahoo.com

St. Petersburg Branch

Ресей, St. Petersburg

I. Demina

Pushkov Institute of Terrestrial Magnetism, the Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences

Email: nataliaptitsyna@yahoo.com

St. Petersburg Branch

Ресей, St. Petersburg

Әдебиет тізімі

  1. Баскаков С.И. Радиотехнические цепи и сигналы. М.: Ленард, 528 с. 2016.
  2. Вальчук Т.Е., Лившиц М.А., Фельдштейн Я.И. Зондирование геомагнитным полем высокоширотного магнитного поля Солнца // Письма в Астрон. журн. Т. 4. № 11. С. 515–519. 1978.
  3. Витинский Ю.А., Копецкий М., Куклин Г.В. Статистика пятнообразовательной деятельности Солнца. М.: Наука, 296 с. 1986.
  4. Гоноровский И.С. Радиотехнические цепи и сигналы. М.: Советское радио, 608 с. 1977.
  5. Ланда П.С. Нелинейные колебания и волны. М.: Наука, 495 с. 1997.
  6. Наговицын Ю.А. Солнечная активность двух последних тысячелетий: “Служба Солнца” в древнем и средневековом Китае // Геомагнетизм и аэрономия. Т. 41. № 5. С. 711–720. 2001.
  7. Наговицын Ю.А. Изменения циклических характеристик магнитной активности Солнца на длительных временных шкалах // Геомагнетизм и аэрономия. Т. 54. № 6. С. 723–729. 2014. https://doi.org/10.7868/S0016794014060133
  8. Обридко В.Н., Канониди Х.Д., Митрофанова Т.А., Шельтинг Б.Д. Солнечная активность и геомагнитные возмущения // Геомагнетизм и аэрономия. Т. 53. № 2. С. 157–166. 2013. https://doi.org/10.7868/S0016794013010148
  9. Обридко В.Н., Наговицын Ю.А. Солнечная активность, цикличность и методы прогноза. СПб.: ВВМ, 466 c. 2017.
  10. Птицына Н.Г., Тясто М.И., Храпов Б.А. 22-летний цикл в частоте появления полярных сияний в XIX веке: широтные эффекты // Геомагнетизм и аэрономия. Т. 57. № 2. С. 208–216. 2017. https://doi.org/10.7868/S0016794017020110
  11. Птицына Н.Г., Демина И.М. Реконструкция солнечной активности в 1000–1700 гг. по данным о полярных сияниях с учетом вклада главного магнитного поля земли // Геомагнетизм и аэрономия. T. 60. № 4. С. 515−527. 2020. https://doi.org/10.31857/S0016794020030153
  12. Птицына Н.Г., Демина И.М. Частотная модуляция как причина возникновения дополнительных ветвей векового цикла Глейсберга в солнечной активности // Геомагнетизм и аэрономия. Т. 62. № 1. С. 52–66. 2022. https://doi.org/10.31857/S0016794022010163
  13. Птицына Н.Г., Демина И.М. Влияние цикла Глейсберга на вариации периода 11-летнего цикла солнечной активности в 1700–2021 гг. // Геомагнетизм и аэрономия. T. 63. № 3. С. 284–297. 2023. https://doi.org/10.31857/S0016794022600508
  14. Птицына Н.Г., Демина И.М. Солнечный цикл Швабе в 1000–1700 гг.: вариации длины и амплитуды // Геомагнетизм и аэрономия. T. 64. № 2. С. 217–229. 2024. https://doi.org/10.31857/S0016794024020059
  15. Bertello L., Pevtsov А.А., Ulrich Р.К. 70 years of chromospheric solar activity and dynamics // Astrophys. J. V. 897. № 2. P. 181–195. 2020. https://doi.org/10.3847/1538-4357/ab9746
  16. Brehm N., Bayliss A., Christl M. et al. Eleven-year solar cycles over the last millennium revealed by radiocarbon in tree rings // Nat. Geosci. V. 14. P. 10–15. 2021. https://doi.org/10.1038/s41561-020-00674-0
  17. Borovsky J.E., Denton M.H. Differences between CME-driven storms and CIR-driven storms // J. Geophys. Res. V. 111. № 7. ID A07S08. 2006. https://doi.org/10.1029/2005jA011447
  18. Bothmer V., Desai M.I., Marsden R.G., Sanderson T.R., Trattner K.J., Wenzel K.-P., Gosling J.T., Balogh A., Forsyth R.J., Goldstein B.E. ULYSSES observations of open and closed magnetic field lines within a coronal mass ejection // Astron. Astrophys. V. 316.№ 2. P. 493–498. 1996.
  19. Brückner E. Klimaschwankungen seit 1700. Wien, Olmütz: Ed. Hölzel, 325 p. 1890.
  20. Cliver E.W., Pötzi W., Veronig A.M. Large sunspot groups and great magnetic storms: Magnetic suppression of CMEs // Astrophys. J. V. 938. № 2. ID 136. 2022. https://doi.org/10.3847/1538-4357/ac847d
  21. Clilverd M.A., Clarke E., Ulich T., Rishbeth H., Martin J. Predicting solar cycle 24 and beyond // Space Weather. V. 4. № 9. ID S09005. 2006. https://doi.org/10.1029/2005SW000207
  22. Connor F.R. Modulation. London: Edward Arnold Ltd., 133 p. 1982.
  23. Daubechies I. Ten lectures on wavelets. Philadelphia, PA: Society for industrial and applied mathematics, 369 p. 1992. https://doi.org/10.1137/1.9781611970104
  24. Davies Е.Е, Scolini C., Winslow R.M., Jordan A.P., Möstl C. The effect of magnetic field line topology on ICME-related GCR Modulation // Astrophys. J. V. 959. № 2. ID 133. 2023. https://doi.org/10.3847/1538-4357/ad046a
  25. Echer E., Rigozo N.R., Nordemann D.J.R., Vieira L.E.A. Prediction of solar activity on the basis of spectral characteristics of sunspot number // Ann. Geophys. V. 22. № 6. P. 2239–2243. 2004. https://doi.org/10.5194/angeo-22-2239-2004
  26. Eddy J.A. The historical record of solar activity / The ancient sun: Fossil record in the earth, moon and meteorites / Proceedings of the Conference. Boulder. CO. October 16–19, 1979. (A81-48801 24-91). New York, Oxford: Pergamon Press. P. 119–134. 1980.
  27. Gonzalez W.D., Joselyn J.A., Kamide Y., Kroehl H.W., Rostoker G., Tsurutani B.T., Vasyliunas V.M. What is a geomagnetic storms? // J. Geophys. Res. V. 99. № 4. P. 5771–5792. 1994. https://doi.org/10.1029/93JA02867
  28. Grossmann A., Morlet J. Decomposition of Hardy functions of constant shape // SIAM J. Math. Anal. V. 15. № 4. P.723–736. 1984. https://doi.org/10.1137/0515056
  29. Gopalswamy N. The sun and space weather // Atmosphere. V. 13. № 11. ID 1781. 2022. https://doi.org/10.3390/atmos13111781
  30. Feynman J., Gabriel S.B. Period and phase of the 88-year solar cycle and the Maunder minimum: Evidence for a chaotic sun // Sol. Phys. V. 127. № 2. P. 393–403. 1990. https://doi.org/10.1007/BF00152176
  31. Feynman J., Ruzmaikin A. The Centennial Gleissberg Cycle and its association with extended minima // J. Geophys. Res. – Space. V. 119. № 8. P. 6027–6041. 2014. https://doi.org/10.1002/2013JA019478
  32. Kane R.P. Prediction of the sunspot maximum of solar cycle 23 by extrapolation of spectral components // Sol. Phys. V. 189. № 1. P. 217–224. 1999. https://doi.org/10.1023/A:1005298313886
  33. Keimatsu M., Fukushima N., Nagata T. Archaeo-aurora and geomagnetic secular variation in historic time // J. Geomagn. Geoelectr. V. 20. № 1. P. 45–50. 1968. https://doi.org/10.5636/jgg.20.45
  34. Kudsk S.G., Knudsen M.F., Karoff C., Baittinger C., Misios S., Olsen J. Solar variability between 650 CE and 1900 – Novel insights from a global compilation of new and existing high-resolution 14C records // Quaternary Sci. Rev. V. 292. ID 107617. 2022. https://doi.org/10.1016/j.quascirev.2022.107617
  35. Liritzis Y., Petropoulos B. Latitude dependence of auroral frequency in relation to solar-terrestrial and interplanetary parameters // Earth Moon Planets. V. 39. № 1. P. 75–91. 1987. https://doi.org/10.1007/BF00054435
  36. McCracken K.G., Beer J., Steinhilber F., Abreu J. A phenomenological study of the cosmic ray variations over the past 9400 years, and their implications regarding solar activity and the solar dynamo // Sol. Phys. V. 286. № 2. P. 609−627. 2013. https://doi.org/10.1007/s11207-013-0265-0
  37. Meng X., Tsurutani B.T., Mannucci A.J. The solar and interplanetary causes of superstorms (minimum Dst ≤ −250 nT) during the space age // J. Geophys. Res. V. 124. № 6. P. 3926–3948. 2019. https://doi.org/10.1029/2018JA026425
  38. Muscheler R., Joos F., Beer J., Müller S.A., Vonmoos M., Snowball I. Solar activity during the last 1000 yr inferred from radionuclide records // Quaternary Sci. Rev. 2006. V. 26. № 1–2. P. 82–97. 2006. https://doi.org/10.1016/j.quascirev.2006.07.012
  39. Peristykh A.N., Damon P.E. Persistence of the Gleissberg 88 year cycle over the last ~12,000 years: Evidence from cosmogenic isotope // J. Geophys. Res. − Space. V. 108. № 1. ID 1003. 2003. https://doi.org/10.1029/2002JA009390
  40. Petrovay K. Solar cycle prediction // Living Rev. Sol. Phys. V. 17. ID 2. 2020. https://doi.org/10.1007/s41116-020-0022-z
  41. Raspopov O.M., Shumilov O.I, Kasatkina EA, Turunen E., Lindtholm M. 35-year climatic Bruckner cycle – solar control of climate variability? / Proc. 1st Solar and Space weather Euroconference “The solar cycle and terrestrial climate”. Santa Cruz de Tenerife, Spain. September 25–29, 2000. Ed. A. Wilson. Noordwijk, Netherlands: ESA Publications Division. P. 517. 2000.
  42. Schove D.J. Aurora numbers since 500 B.C. // Journal of the British Astronomical Association. V.72. № 1. P. 31–35. 1962.
  43. Silverman S.M. Secular variation of the aurora for the past 500 years // Rev. Geophys. V. 30. № 4. P. 333–351. 1992. https://doi.org/10.1029/92RG01571
  44. Simon P.A., Legrand J.P. Solar cycle and geomagnetic activity: A review for geophysicists. Part II. The solar sources of geomagnetic activity and their links with sunspot cycle activity // Ann. Geophys. V. 7. № 6. P. 579–593. 1989.
  45. Siscoe G.L. Evidence in the auroral record for secular solar variability // Rev. Geophys. V. 18. № 3. P. 647–658. 1980. https://doi.org/10.1029/RG018i003p00647
  46. Singh Y.P., Badruddin B. Prominent short-, mid-, and long-term periodicities in solar and geomagnetic activity: Wavelet analysis // Planet. Space Sci. V. 96. P. 120–124. 2014. https://doi.org/10.1016/j.pss.2014.03.019
  47. Svalgaard L. Up to nine millennia of multimessenger solar activity // arXiv Preprint: 1810.11952. 2018. https://arxiv.org/ftp/arxiv/papers/1810/1810.11952.pdf
  48. Travers R., Usoskin I.G., Solanki S.K., Becagli S., Frezzetti M., Severi M., Stenni B., Udisti R. Nitrate in polar ice: a new tracer of solar variability // Sol. Phys. V. 280. № 1. P. 237–254. 2012. https://doi.org/10.1007/s11207-012-0060-3
  49. Tsurutani B., Gonzalez W., Gonzalez A.L.C. et al. Corotating solar wind streams and recurrent geomagnetic activity: a review // J. Geophys. Res. V. 111. № 7. ID A07S01. 2006. https://doi.org/10.1029/2005JA011273
  50. Usoskin I.G. A history of solar activity over millennia // Living Rev. Sol. Phys. V. 14. ID 3. 2017. https://doi.org/10.1007/s41116-017-0006-9
  51. Usoskin I.G., Solanki S.K., Kovaltsov G.A. Grand minima and maxima of solar activity: new observational constraints // Astron. Astrophys. V. 471. № 1. P. 301–309. 2007. https://doi.org/10.1051/0004-6361:20077704
  52. Usoskin I.G., Solanki S.K., Krivova N., Hofer B., Kovaltsov G.A., Wacker L., Brehm N., Kromer B. Solar cycle activity over the last millennium reconstructed from annual 14C data // Astron. Astrophys. V. 649. ID A141. 2021. https://doi.org/10.1051/0004-6361/202140711
  53. Vazquez M., Vaquero J.M., Gallego M.C. Long-term spatial and temporal variations of aurora borealis events in the period 1700–1905 // Sol. Phys. V. 289. № 5. P. 1843–1861. 2014. https://doi.org/10.1007/s11207-013-0413-6
  54. Veretenenko S., Ogurtsov M., Obridko V. Long-term variability in occurrence frequencies of magnetic storms with sudden and gradual commencements // J. Atmos. Sol.–Terr. Phy. V. 205. ID 105295. 2020. https://doi.org/10.1016/j.jastp.2020.105295
  55. Webb D.F., Crooker N.U., Plunkett S.P., St. Cyr O.C. The solar sources of geoeffective structures / Space Weather: Progress and Challenges in Research and Applications. Eds. P. Song, H.J. Singer, G. Siscoe / Geophysical Monograph Series. V. 125. Washington, DC: AGU. P. 123–141. 2001. https://doi.org/10.1029/GM125p0123

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Reconstructed solar activity series. (a) - by polar lights, row SN1, (b) - by 14C, row SN2; (c) - smoothed and normalized series: solid line shows row SN1, dashed line - row SN2. Vertical lines mark the grand minima.

Жүктеу (286KB)
3. Fig. 2. Spectra of the analyzed time series before (a) and after filtering (b).

Жүктеу (401KB)
4. Fig. 3. Wavelet spectrum of the time series SN1. Isolines - modulus of wavelet coefficients, circles - maxima of the 30-year component, rhombuses - maxima of the 40-year component.

Жүктеу (412KB)
5. Fig. 4. Variation of the period of the 30-40-year components found from the wavelet spectrum of SN1 and predicted under the hypothesis of modulation by the long-wave signal. Circles denote the periods of the 30-year component, rhombuses denote the periods of the 40-year component, shaded - obtained from the wavelet spectrum, unshaded - predicted.

Жүктеу (148KB)
6. Fig. 5. Wavelet spectrum of time series SN2. The notation is the same as for Fig. 3, asterisks indicate the highlighted period of the main oscillation with the period T = 35±1 year.

Жүктеу (368KB)
7. Fig. 6. Variation of the period of 30- and 40-year components found from the wavelet spectrum of SN2 and predicted under the hypothesis of modulation by the long-wave signal. The notation is the same as in Fig. 4.

Жүктеу (135KB)
8. Fig. 7. Comparison of the predicted branches of the 35-year main oscillation from the wavelet spectra of SN1 and SN2. Symbols denote the predicted periods of the 30-year branch of SN2, symbols denote the same 40-year branch, and symbols denote the same 30-year and -40-year branches of SN1.

Жүктеу (167KB)
9. Fig. 8.Reciprocal correlation functions of the 40-year (a) and 30-year (b) spectral components in SN1 and SN2.The arrows indicate the maxima discussed in the text.

Жүктеу (149KB)

© Russian Academy of Sciences, 2025