Cosmic ray intensity forecast for the current century

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

To diagnose and forecast the state of the heliosphere, as well as space weather and climate, it is necessary to know the temporal changes of galactic cosmic rays flux at the Earth’s orbit. The aim of the work is to forecast the cosmic ray flux for the next century based on the relationship between the modulation of galactic cosmic rays and the characteristics of solar activity. For a long-term forecast, one parameter models of solar activity were used that determines the modulation of galactic cosmic rays – the number of sunspots or the potential of cosmic rays solar modulation. As a result, a long-term forecast of the cosmic ray flux was obtained based on the analysis of a dozen models of solar activity behavior for the next century. The analysis suggests that, contrary to earlier forecasts, the probability of a large solar minimum at the end of the 21st century is small. This is shown by the majority of long-term solar activity forecasts by various authors which was analyzed by us. An almost twofold increase in the level of solar activity is expected by the middle of the century and a subsequent transition to approximately current level at the end of the century. Reduced intensity of galactic cosmic rays is expected at the Earth’s orbit by mid-century.

Texto integral

Acesso é fechado

Sobre autores

P. Kobelev

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences

Autor responsável pela correspondência
Email: kobelev@izmiran.ru
ORCID ID: 0000-0002-9727-4395
Rússia, Moscow, Troitsk

L. Trefilova

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences

Email: kobelev@izmiran.ru
ORCID ID: 0000-0002-2563-5550
Rússia, Moscow, Troitsk

А. Belov

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences

Email: kobelev@izmiran.ru
ORCID ID: 0000-0002-1834-3285
Rússia, Moscow, Troitsk

R. Gushchina

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences

Email: kobelev@izmiran.ru
ORCID ID: 0000-0002-5247-7404
Rússia, Moscow, Troitsk

V. Yanke

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences

Email: kobelev@izmiran.ru
ORCID ID: 0000-0001-7098-9094
Rússia, Moscow, Troitsk

Bibliografia

  1. Белов А.В., Ерошенко Е.А., Янке В.Г., Оленева В.А., Абунина М.А., Абунин А.А. Метод глобальной съемки для мировой сети нейтронных мониторов // Геомагнетизм и аэрономия. Т. 58. № 3. C. 374–389. 2018. https://doi.org/10.7868/S0016794018030082
  2. Веретененко С.В., Огурцов М.Г. Исследование пространственно-временной структуры долгопериодных эффектов солнечной активности и вариаций космических лучей в циркуляции нижней атмосферы // Геомагнетизм и аэрономия. Т. 52. № 5. С. 626–638. 2012.
  3. Кудрявцев И.В., Юнгер X. Вариации прозрачности атмосферы под действием галактических космических лучей как возможная причина их влияния на формирование облачности // Геомагнетизм и аэрономия. Т. 51. № 5. С. 668–676. 2011.
  4. Лушников А.А., Загайнов В.А., Любовцева Ю.С., Гвишиани А.Д. Образование наноаэрозолей в тропосфере под действием космического излучения // Изв. РАН. Физика атмосферы и океана. Т. 50. № 2. С. 175–184. 2014. https://doi.org/10.7868/S0002351514020072
  5. Янке В.Г., Белов А.В., Гущина Р.Т., Кобелев П.Г., Трефилова Л.А. Об остаточной модуляции галактических космических лучей в гелиосфере // Космич. исслед. Т. 61. № 1. 2023. C. 43–51. https://doi.org/10.31857/S0023420622060115
  6. Янчуковский В.Л. Реакция атмосферы на средних широтах на спорадические вариации космических лучей // Солнечно-земная физика. Т. 10. № 4. С. 1–8. 2024. https://doi.org/10.12737/szf-101101101
  7. Abreu J.A., Beer J., Ferriz-Mas A. Past and future solar activity from cosmogenic radionuclides // In Astronomical Society of the Pacific Conference Series: Soho-23: Understanding a Peculiar Solar Minimum. V. 428. P. 287–295. 2010.
  8. Barnard L., Lockwood M., Hapgood M.A., Owens M.J., Davis C.J., Steinhilber F. Predicting space climate change // Geophys. Res. Lett. V. 38. L16103. 2011. https://doi.org/10.1029/2011GL048489
  9. Belov A., Eroshenko E., Yanke V., Oleneva V., Abunin A., Abunina M., Papaioannou A., Mavromichalaki E. The Global Survey Method applied to Ground Level Cosmic Ray Measurements // Solar Physics. V. 293. Article number 68. 2018. https://doi.org/10.1007/s11207-018-1277-6
  10. Bisschoff D., Potgieter M.S., Aslam O.P.M. New very local interstellar spectra for electrons, positrons, protons and light cosmic ray nuclei // The Astrophysical Journal. V. 878. № 1. Article number 59. 2019. https://doi.org/10.3847/1538-4357/ab1e4a
  11. Biswas A., Karak B.B., Usoskin I., Weisshaar E. Long-Term Modulation of Solar Cycles // Space Science Reviews. V. 219. Article number 19. 2023. https://doi.org/10.1007/s11214-023-00968-w
  12. Bonev B.P., Penev K.M., Sello S. Long-term solar variability and the solar cycle in the 21st century // The Astrophysical Journal. V. 605. № 1. L81–L84. 2004. https://doi.org/10.1086/420695
  13. Caballero-Lopez R.A., Moraal H. // Limitations of the force field equation to describe cosmic ray modulation. // JGRA. V. 109. Issue A1. A01101. 2004. https://doi.org/10.1029/2003JA010098
  14. Gleeson L.J., Axford W.I. Solar Modulation of Galactic Cosmic Rays // Astrophys. J. V. 154. P. 1011. 1968. https://doi.org/10.1086/149822
  15. Clilverd M.A., Clarke E., Ulich T., Rishbeth H., Jarvis M.J. Predicting Solar Cycle 24 and beyond // Space Weather. V. 4. S09005. 2006. https://doi.org/10.1029/2005SW000207
  16. Gray L.J., Beer J., Geller M., Haigh J.D., Lockwood M., Matthes K., Cubasch U., Fleitmann D., Harrison G., Hood L. et.al. Solar influences on climate // Reviews of Geophysics V. 48. Issue 4. RG4001. https://doi.org/10.1029/2009RG000282
  17. Gulev S.K., Thorne P.W. Climate change 2021: The physical science basis. // 6th AR IPCC. London: Cambridge University Press. P. 422. 2023. https://doi.org/10.1017/9781009157896.004
  18. Herrera V.M.V., Soon W., Legate D.R. Does Machine Learning reconstruct missing sunspots and forecast a new solar minimum? // Advances in Space Research. V. 68. Issue 3. P. 1485–1501. 2021. https://doi.org/10.1016/j.asr.2021.03.023
  19. Hiremath K., 2008. Prediction of solar cycle 24 and beyond // Astrophys. Space Sci. V. 314. P. 45–49. https://doi.org/10.1007/s10509-007-9728-9
  20. Karak B.B., Miesch M. “Solar Cycle Variability Induced by Tilt Angle Scatter in a Babcock–Leighton Solar Dynamo Model” // The Astrophysical Journal. V. 847. Article number 69. 2017. https://doi.org/10.3847/1538-4357/aa8636
  21. Kniveton D.R. Precipitation, cloud cover and Forbush decreases in galactic cosmic rays // J. Atmos. Solar Terr. Phys. V. 66. Issues 13–14. P. 1135–1142. 2004. https://doi.org/10.1016/j.jastp.2004.05.010
  22. Knudsen M.F., Riisager P., Jacobsen B.H., Muscheler R., Snowball I., Seidenkrantz M.S. Taking the pulse of the Sun during the Holocene by joint analysis of (14)C and (10) Be // Geophys. Res. Lett. V. 36. L16701. 2009. https://doi.org/10.1029/2009GL039439
  23. Lockwood M. Solar change and climate: An update in the light of the current exceptional solar minimum. // Proc. R. Soc. A. V. 466. Issue 2114. P. 303–329. 2010. https://doi.org/10.1098/rspa.2009.0519
  24. Lockwood M., Owens M.J., Barnard L., Davis C.J., and Steinhilber F. The persistence of solar activity indicators and the descent of the Sun into Maunder Minimum conditions // Geophys. Res. Lett. V. 38. Issue 22. L22105. 2011. https://doi.org/10.1029/2011GL049811
  25. Moraal H. Cosmic-ray modulation equations // Space Sci. Rev. V. 176. P. 299–319. 2013. https://doi.org/10.1007/s11214-011-9819-3
  26. Morner N.A. The approaching new grand solar minimum and little ice age climate conditions // Natural Science. // V. 7. P. 510–518. 2015. http://dx.doi.org/10.4236/ns.2015.711052
  27. Nasirpour M.H., Sharifi A., Ahmadi M. Revealing the relationship between solar activity and COVID-19 and forecasting of possible future viruses using multi-step autoregression (MSAR) // Environmental Science and Pollution Research V. 28. P. 38074–38084. 2021. https://doi.org/10.1007/s11356-021-13249-2
  28. Palle E., Butler C.J., O’Brien K. The possible connection between ionization in the atmosphere by cosmic rays and low level clouds // J. Atm. Solar-Terr. Phys. V. 66. P. 1779–1790. 2004. https://doi.org/10.1016/j.jastp.2004.07.041
  29. Poluianov S.V., Kovaltsov G.A., Mishev A.L., Usoskin I.G. Production of cosmogenic isotopes 7Be, 10Be, 14C, 22Na, and 36Cl in the atmosphere: Altitudinal profiles of yield functions // J. Geophys. Res. Atmos. V. 121. P. 8125‒8136. 2016. https://doi.org/10.1002/2016JD025034
  30. Rigozo N.R., Nordemann D.J.R., Echer E., Echer M.P.S., Silva H.E. Prediction of solar minimum and maximum epochs on the basis of spectral characteristics for the next millennium // Planetary and Space Science. V. 58. P. 1971–1976. 2010. https://doi.org/10.1016/j.pss.2010.09.020
  31. Salvador R.J. A mathematical model of the sunspot cycle for the past 1000 yr // Pattern Recogn. Phys. V. 1. P. 117–122. 2013. https://doi.org/10.5194/prp-1-117-2013
  32. Steinhilber F., Abreu J.A., Beer J. Solar modulation during the Holocene // Astrophys. Space Sci. Trans. V. 4. P. 1–6. 2008. https://doi.org/10.5194/astra-4-1-2008
  33. Steinhilber F., Beer J. Prediction of solar activity for the next 500 years // J. Geophys. Res. Space Physics. V. 118. P. 1861–1867. 2013. https://doi.org/10.1002/jgra.50210
  34. Stuiver M., Reimer P.J., Braziunas T. High-precision radiocarbon age calibration for terrestrial and marine samples // Radiocarbon, V. 40. № 3. P. 1127‒1151. 1998. https://doi.org/10.1017/S0033822200019172
  35. Tinsley B.A., Zhou L. Initial results of a global circuit model with stratospheric and tropospheric aerosols // J. Geophys. Res. V. 111. D16205. 2006. https://doi.org/10.1029/2005JD006988
  36. Tinsley B.A. A working hypothesis for connections between electrically-induced changes in cloud microphysics and storm vorticity, with possible effects on circulation // Adv. Space Res. 2012. V. 50. Issue 6. P. 791–805. https://doi.org/10.1016/j.asr.2012.04.008
  37. Usoskin I.G. A history of solar activity over millennia // Living Rev. Sol. Phys. V. 14. Article number 3. 2017. https://doi.org/10.1007/s41116-017-0006-9
  38. Vinos J. Climate of the Past, Present and Future. A Scientific Debate // Madrid: Critical Science Press. 279 p. 2022. https://judithcurry.com/wp-content/uploads/2022/09/Vinos-CPPF2022.pdf
  39. Vos E.E., Potgieter M.S. New Modeling of Galactic Proton Modulation during the Minimum of Solar Cycle 23/24 // Astrophys. J. V. 815. № 2. Article number 119. 2015. 10.1088/0004-637X/815/2/119' target='_blank'>https://doi.org/doi: 10.1088/0004-637X/815/2/119
  40. Xepapadeas A. Uncertainty and climate change: The IPCC approach vs decision theory // Journal of Behavioral and Experimental Economics. V. 109. 102188. 2024. https://doi.org/10.1016/j.socec.2024.102188
  41. Yanke V.G., Belov A.V., Gushchina R.T., Kobelev P.G., Trefilova L.A. “Forecast of Modulation of Cosmic Rays with Hardness of 10 GV in the 25th Solar Activity Cycle” // Geomagnetism and Aeronomy. V. 64. No. 2. P. 201–210. 2024. https://doi.org/10.1134/S0016793223601072

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Long-term forecasts of the sunspot number RZ according to Table 1. The sunspot number maxima for each forecast are connected by a continuous line. For the forecast [Barnard et al., 2011], the error corridor is also given. The top panel shows all available 9 forecasts, while the bottom panel shows the 3 highlighted forecasts.

Baixar (402KB)
3. Fig. 2. Reconstructed to ~2000 and projected potential ϕ of the solar cosmic ray modulation for two forecast models (FFT and WTAR) for the period 2000-2500 (22-year smoothing) [Steinhilber et al., 2013] and the potential forecast from [Barnard et al., 2011]. The inset shows the annual mean values of the CL solar modulation potential from the ground-based neutron monitor network [Usoskin et al., 2017].

Baixar (141KB)
4. Fig. 3. Comparison of the amplitude variations v of galactic cosmic rays of 10 GW stiffness outside the magnetosphere and the variations determined by the vmodel (1) experimentally found by the GSM method. The uncertainties of the v-vmodel model are also shown.

Baixar (241KB)
5. Fig. 4. Comparison of the predicted variations/intensity for 10 GV (left/right scale) in Earth's orbit in the current century for three sunspot number projections [Herrera et al., 2021; Nasirpour et al., 2021; Vinos, 2022]. A continuous line connects the variation maxima (intensity minima) for the forecast [Vinos, 2022]. The CL intensity in the JLIS interstellar medium is shown schematically.

Baixar (334KB)
6. Fig. 5.Reconstructed J1AU cosmic ray intensities (left scale) and their variations (right scale) in Earth orbit from the predicted solar cosmic ray modulation potential for three prediction models:[Steinhilber et al., 2013] - (FFT and WTAR) and [Barnard et al., 2011] (Fig. 2).

Baixar (131KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025