Параметры корональных диммингов и их вариации в течение 24-го солнечного цикла
- Авторы: Вахрушева А.А.1, Шугай Ю.С.1, Капорцева К.Б.1, Еремеев В.Е.1, Калегаев В.В.1
-
Учреждения:
- Московский государственный университет им. М. В. Ломоносова (МГУ)
- Выпуск: Том 64, № 1 (2024)
- Страницы: 3-12
- Раздел: Статьи
- URL: https://bioethicsjournal.ru/0016-7940/article/view/650951
- DOI: https://doi.org/10.31857/S0016794024010017
- EDN: https://elibrary.ru/GRSFFB
- ID: 650951
Цитировать
Аннотация
Исследованы параметры диммингов и их связь с корональными выбросами массы для определения расположения возможных источников выбросов на диске Солнца в ходе 24-го солнечного цикла. Использована база данных Solar Demon, в которой содержится информация по вспышкам и диммингам, полученная путем обработки изображений с космической обсерватории SDO/AIA. Из всех проанализированных диммингов 16% соотнесены с корональными выбросами массы из базы данных CACTus по данным коронографа SOHO/LASCO за 2010−2018 гг. По распределению параметров установлено, что димминги, связанные с корональными выбросами массы, в среднем являются событиями с большими абсолютными величинами параметров. Между центральным углом димминга и центральным углом соотнесенного с ним коронального выброса массы коэффициент корреляции равен 0.96. Для диммингов, наблюдаемых в центральной части диска Солнца, были получены коэффициенты корреляции между скоростью коронального выброса массы и параметрами димминга, близкие к 0.5. Полученные результаты могут быть использованы для моделирования распространения корональных выбросов массы и уточнения вероятности их прихода на околоземную орбиту.
Полный текст

Об авторах
А. А. Вахрушева
Московский государственный университет им. М. В. Ломоносова (МГУ)
Автор, ответственный за переписку.
Email: vakhr.anna@gmail.com
Научно-исследовательский институт ядерной физики им. Д. В. Скобельцына (НИИЯФ), физический факультет
Россия, МоскваЮ. С. Шугай
Московский государственный университет им. М. В. Ломоносова (МГУ)
Email: vakhr.anna@gmail.com
Научно-исследовательский институт ядерной физики им. Д. В. Скобельцына (НИИЯФ)
Россия, МоскваК. Б. Капорцева
Московский государственный университет им. М. В. Ломоносова (МГУ)
Email: vakhr.anna@gmail.com
Научно-исследовательский институт ядерной физики им. Д. В. Скобельцына (НИИЯФ), физический факультет
Россия, МоскваВ. Е. Еремеев
Московский государственный университет им. М. В. Ломоносова (МГУ)
Email: vakhr.anna@gmail.com
Научно-исследовательский институт ядерной физики им. Д. В. Скобельцына (НИИЯФ)
Россия, МоскваВ. В. Калегаев
Московский государственный университет им. М. В. Ломоносова (МГУ)
Email: vakhr.anna@gmail.com
Научно-исследовательский институт ядерной физики им. Д. В. Скобельцына (НИИЯФ), физический факультет
Россия, МоскваСписок литературы
- Черток И.М., Гречнев В.В. Крупномасштабные “димминги”, вызываемые корональными выбросами массы на Солнце, по данным SOHO/EIT в четырех линиях крайнего УФ-диапазона // Астрон. журн. Т. 80. № 11. C. 1013–1025. 2003.
- Черток И.М., Гречнев В.В. Некоторые проявления крупномасштабной активности на солнечном диске в связи с корональными выбросами массы // Солнечно-земная физика. Т. 6. С. 101—103. 2004.
- Chertok I.M., Grechnev V.V. Manifestations of CME-associated dimmings at four EUV wavelengths of SOHO/EIT // International Solar Cycle Studies Symposium 2003 “Solar Variability as an Input to the Earth’s Environment”, Tatranská Lomnica, Slovakia, 23–28 June 2003. Ed. A. Wilson. ESA SP-535
- Chertok I.M., Grechnev V.V. Large-scale activity in the Bastille Day 2000 solar event // Sol. Phys. V. 229. P. 95— 114. 2005. doi: 10.1007/s11207-005-3654-1
- Chikunova G., Dissauer K., Podladchikova T., Veronig A.M. Coronal dimmings associated with coronal mass ejections on the solar limb // Astrophys. J. V. 896. P. 17—33. 2020. doi: 10.3847/1538-4357/ab9105
- Compagnino A., Romano P., Zucarello F. A statistical study of CME properties and of the correlation between flares and CMEs over solar cycles 23 and 24 // Sol. Phys. V. 292. A5. 2017. doi: 10.1007/s11207-016-1029-4
- Dissauer K., Veronig A.M., Temmer M., Podladchikova T., Vanninathan K. Statistics of coronal dimmings associated with coronal mass ejections. I. Characteristic dimming properties and flare association // Astrophys. J. V. 863. P. 169–188. 2018. doi: 10.3847/1538-4357/aad3c6
- Dissauer K., Veronig A.M., Temmer M., Podladchikova T. Statistics of coronal dimmings associated with coronal mass ejections. II. Relationship between coronal dimmings and their associated CMEs // Astrophys. J. V. 874. P. 123— 137. 2019. doi: 10.3847/1538-4357/ab0962
- Gopalswamy N., Kaiser M.L., MacDowall R.J., Reiner M.J., Thompson B.J., St. Cyr O.C. Dynamical phenomena associated with a coronal mass ejection // AIP Conference Proceedings. V. 471. P. 641–644. 1999.
- Gopalswamy N., Yashiro S., Mäkelä P., Michalek G., Shibasaki K., Hathaway D.H. Behavior of solar cycles 23 and 24 revealed by microwave observations // Astrophys. J. Lett. V. 750. L42. 2012. doi: 10.1088/2041-8205/750/2/L42
- Hansen R.T., Garcia C.J., Hansen S.F., Yasukawa E. Abrupt depletions of the inner corona // Pub. Astron. Soc. Pacific. V. 86. P. 500— 515. 1974. doi: 10.1086/129638
- Harra L.K., Sterling A.C. Material outflows from coronal intensity “dimming regions” during coronal mass ejection onset // Astrophys. J. Lett. V. 561 L215–L218. 2001. doi: 10.1086/324767
- Harrison R.A., Bryans P., Simnett G.M., Lyons M. Coronal dimming and the coronal mass ejection onset // Astron. Astrophys. V. 400. P. 1071–1083. 2003. doi: 10.1051/0004-6361:20030088
- Hudson H.S., Acton L.W., Freeland S.L. A long-duration solar flare with mass ejection and global consequences // Astrophys. J. V. 470 P. 629–635. 1996. doi: 10.1086/177894
- Hudson H.S., Webb D.F. Soft X-ray signatures of coronal ejections // Geophys. Monogr. Ser. V. 99. Eds. N. Crooker, J. A. Joselyn, J. Feynman. P. 27–38. Washington, AGU. 1997. doi: 10.1029/GM099p0027
- Hurlburt N., Cheung M., Schrijver C., et al. Heliophysics event knowledgebase for the Solar Dynamics Observatory (SDO) and beyond // Sol. Phys. V. 275 P. 67–78. 2012. doi: 10.1007/s11207-010-9624-2
- Jin M., Cheung M.C.M., DeRosa M.L., Nitta N.V., Schrijver C.J. Coronal mass ejections and dimmings: a comparative study using MHD simulations and SDO observations // Astrophys. J. V. 928. № 2. P. 154–165. 2022. doi: 10.3847/1538-4357/ac589b
- Kraaikamp E., Verbeeck C. Solar Demon — an approach to detecting flares, dimmings and EUV waves on SDO/AIA images // J. Space Weather Spac. V. 5 A18. 2015. doi: 10.1051/swsc/2015019
- Lamy P.L., Floyd O., Boclet B., Wojak J., Gilardy H., Barlyaeva T. Coronal mass ejections over solar cycles 23 and 24 // Space Sci. Rev. V. 215. A39. 2019. doi: 10.1007/s11214-019-0605-y
- López F.M., Cremades H., Balmaceda L.A., Nuevo F.A., Vásquez A.M. Estimating the mass of CMEs from the analysis of EUV dimmings // Astron. Astrophys. V. 627 A8. 2019. doi: 10.1051/0004-6361/201834163
- Mason J.P., Woods T.N., Webb D.F., Thompson B.J., Colaninno R.C., Vourlidas A. Relationship of EUV irradiance coronal dimming slope and depth to coronal mass ejection speed and mass // Astrophys. J. V. 830. № 1. P. 20–31. 2016. doi: 10.3847/0004-637X/830/1/20
- Muhr N., Veronig A.M., Kienreich I.W., Temmer M., Vršnak B. Analysis of characteristic parameters of large-scale coronal waves by the Solar-Terrestrial Relations Observatory / Extreme Ultraviolet Imager // Astrophys. J. V. 739. № 2. A. 89. 2011. doi: 10.1088/0004-637X/739/2/89
- NASA Interactive Multi-Instrument Database of Solar Flares https://data.nas.nasa.gov/helio/portals/solarflares/
- NASA SOHO LASCO CME CATALOG — CDAW DATA CENTER. https://cdaw.gsfc.nasa.gov/CME_list/
- Podladchikova T., Veronig A.M., Dissauer K., Temmer M., Podladchikova O. Three-dimensional reconstructions of extreme-ultraviolet wave front heights and their influence on wave kinematics // Astrophys. J. V. 877. № 2. A. 68. 2019. doi: 10.3847/1538-4357/ab1b3a
- Reinard A.A., Biesecker D.A. Coronal mass ejection — associated coronal dimmings // Astrophys. J. V. 674. P. 576— 585. 2008. doi: 10.1086/525269
- Robbrecht E., Berghmans D., Van der Linden R.A.M. Automated LASCO CME catalog for solar cycle 23: are CMEs scale invariant? // Astrophys. J. V. 691. № 2. P. 1222–1234. 2009. doi: 10.1088/0004-637X/691/2/1222
- Rodkin D., Slemzin V., Zhukov A.N., Goryaev F., Shugay Y., Veselovsky I. Single ICMEs and complex transient structures in the solar wind in 2010–2011 // Sol. Phys. V. 293. A. 78. 2018. doi: 10.1007/s11207-018-1295-4
- Rust D.M., Hildner E. Expansion of an X-ray coronal arch into the outer corona // Sol. Phys. V. 48. P. 381–387. 1976. doi: 10.1007/BF00152003
- Shugai Y.S. Analysis of quasistationary solar wind stream forecasts for 2010-2019 // Russian Meteorology and Hydrology. V. 46. P. 172–178. 2021. doi: 10.3103/s1068373921030055
- Shugay Y., Kalegaev V., Kaportseva K., Slemzin V., Rodkin D., Eremeev V. Modeling of solar wind disturbances associated with coronal mass ejections and verification of the forecast results // Universe. V. 8. № 11. P. 565–585. 2022. doi: 10.3390/universe8110565
- Solar Influences Data Analysis Center (Royal Observatory of Belgium) Solar Demon — Flares, Dimmings and EUV waves event detection. https://www.sidc.be/solardemon/
- Solar Influences Data Analysis Center (Royal Observatory of Belgium) CACTus CME Homepage. https://www.sidc.be/cactus/
- Solar Influences Data Analysis Center (Royal Observatory of Belgium) Sunspot Number | SILSO https://www.sidc.be/silso/datafiles
- Sterling A.C., Hudson H.S. Yohkoh SXT observations of X-ray “dimming” associated with a halo coronal mass ejection // Astrophys. J. V. 491. № 1. P. L55–L58. 1997. doi: 10.1086/311043
- Ternullo M. Looking inside the butterfly diagram // Astronomische Nachrichten. V. 328. № 10. P. 1023–1026. 2007. doi: 10.1002/asna.200710868
- Vanninathan K., Veronig A.M., Dissauer K., Temmer M. Plasma diagnostics of coronal dimming events // Astrophys. J. V. 857. P. 62–83. 2018. doi: 10.3847/1538-4357/aab09a
- Veronig A.M., Podladchikova T., Dissauer K., Temmer M., Seaton D.B., Long D., Guo J., Vršnak B., Harra L., Kliem B. Genesis and impulsive evolution of the 2017 September 10 coronal mass ejection // Astrophys. J. V. 868. № 2. A. 107. 2018. doi: 10.3847/1538-4357/aaeac5
- Webb D.F., Lepping R.P., Burlaga L.F., DeForest C.E., Larson D.E., Martin S.F., Plunkett S.P., Rust D.M. The origin and development of the May 1997 magnetic cloud // J. Geophys. Res. V. 105. № A12. P. 27251— 27260. 2000. doi: 10.1029/2000JA000021
- Xie H., Ofman L., Lawrence G. Cone model for halo CMEs: application to space weather forecasting // J. Geophys. Res. V. 109. A03109. 2004. doi: 10.1029/2003JA010226
- Yashiro S., Michalek G., Gopalswamy N. A comparison of coronal mass ejections identified by manual and automatic methods // Ann. Geophysicae. V. 26. № 10. P. 3103— 3112. 2008. doi: 10.5194/angeo-26-3103-2008
Дополнительные файлы
