Selective limiting concentration of the electrolyte solutions with singly and doubly charged cations

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The effect of the anion exchange layer of the copolymer N,N-diallyl-N,N-dimethylammonium chloride and methyl methacrylate on the electrochemical properties of a homogeneous perfluorosulfopolymer-based cation exchange membrane has been studied. Applying a modifying layer with a thickness of 5 microns to a membrane with a thickness of 215 microns leads to a decrease in electrical conductivity by no more than 35%, while the diffusion permeability decreases by more than 5 times and ceases to depend on concentration.

During membrane testing, similar levels of concentration were achieved in the process of the limiting electrodialysis concentration of sodium chloride solution. The effectiveness of a bilayer membrane for selective electrodialysis concentration was demonstrated. During the concentration of sodium and calcium chlorides mixture, the permselectivity coefficient P(Na+/Ca2+) ranged from 0.5 to 1.2 in the case of using the cation exchange membrane. Using a bilayer membrane led to a significant increase of the permselectivity coefficient, ranging from 1.5 to 2.7, depending on current density. This makes it possible to efficiently separate electrolytes with singly and doubly charged ions.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Kovalchuk

Kuban State University; Platov South-Russian State Polytechnic University (NPI)

Хат алмасуға жауапты Автор.
Email: kovol13@yandex.ru
Ресей, Krasnodar; Novocherkassk

A. Minenko

Kuban State University

Email: kovol13@yandex.ru
Ресей, Krasnodar

N. Romanyuk

Kuban State University

Email: kovol13@yandex.ru
Ресей, Krasnodar

N. Smirnova

Platov South-Russian State Polytechnic University (NPI)

Email: kovol13@yandex.ru
Ресей, Novocherkassk

S. Loza

Kuban State University

Email: kovol13@yandex.ru
Ресей, Krasnodar

V. Zabolotsky

Kuban State University

Email: kovol13@yandex.ru
Ресей, Krasnodar

Әдебиет тізімі

  1. Al-Amshawee S., Yunus M.Y.B.M., Azoddein A.A.M. et al. // Chem. Eng. J. 2020. V. 380. 122231.
  2. Kabir M.M., Sabur G.M., Akter M.M. et al. // Desalination. 2024. V. 569. 117041.
  3. Shi J., Gong L., Zhang T., Sun S. // Membranes. 2022. V. 12. 767.
  4. Mustafa J., Al-Marzouqi A.H., El-Naas M.H., Ghasem N. // Desalination. 2021. V. 520. 115327.
  5. Turek M. // Desalination. 2003. V. 153. 115327.
  6. AlMadani H.M.N. // Renew. Energy. 2003. V. 28 (12). P. 1915–1924.
  7. Tado K., Sakai F., Sano Y., Nakayama A. // Desalination. 2016. V. 378. P. 60–66.
  8. Yan J., Wang H., Fu R. et al. // Desalination. 2022. V. 531. 115690.
  9. Gurreri L., Tamburini A., Cipollina A., Micale G. // Membranes. 2020. V. 10. 146.
  10. Sun B., Zhang M., Huang S. et al. // Sep. Purif. Technol. 2022. V. 281. 119907.
  11. Li C., Ramasamy D.L., Sillanpää M., Repo E. // Sep. Purif. Technol. 2021. V. 254. 117442.
  12. Kabir M.M., Sabur G.Md., Akter Mst. et al. // Desalination. 2024. V. 569. P. 117041.
  13. Cifuentes L., García I., Arriagada P., Casas J.M. // Sep. Purif. Technol. 2009. V. 68 (1). P. 105–108.
  14. Cerrillo-Gonzalez M. del M., Villen-Guzman. M., Rodriguez-Maroto J.M., Paz-Garcia J.M. // Metals. 2024. V. 14. 134857.
  15. Juve J.-M.A., Christensen F.M.S., Wang. Y., Wei Z. // Chem. Eng. J. 2022. V. 435. 134857.
  16. Havelka J., Fárová H., Jiříček T. et al. // Water Sci. Technol. 2019. V. 79 (8). P. 1580–1586.
  17. Balcik-Canbolat C., Sengezer C., Sakar H. et al. // Environ. Technol. 2020. V. 41 (4). P. 440–449.
  18. Moltedo J.J., Schwarz A., Gonzalez-Vogel A. // J. Environ. Manage, 2022. V. 303. 114104.
  19. Patel S.K., Lee B., Westerhoff P., Elimelech M. // Water. Res. 2024. V. 250. 121009.
  20. Sun B., Zhang M., Huang S. et al. // Desalination. 2021. V. 498. 114793.
  21. Cho Y., Kim K., Ahn J., Lee J. // Metals. 2020. V. 10. 851.
  22. Demin A.V., Zabolotskii V.I. // Russ. J. Electrochem. 2008. V. 44. P. 1058–1064.
  23. Лоза С.А., Романюк Н.А., Фалина И.В., Лоза Н.В. // Мембраны и мембранные технологии. 2023. Т. 13. С. 269–290.
  24. Ge L., Wu B., Li Q. et al. // J. Memb. Sci. 2016. V. 498. P. 192–200.
  25. Hube S., Eskafi M., Hrafnkelsdóttir K.F. // Sci. Total Environ. 2020. V. 710. 136375.
  26. Babilas D., Muszyński J., Milewski A. et al. // Chem. Eng. J. 2021. V. 408. P. 127908.
  27. Luo T., Abdu S., Wessling M. // J. Memb. Sci. 2018. V. 555. P. 429–454.
  28. Ge L., Wu B., Yu D. et al. // Chinese J. Chem. Eng. 2017. V. 25. P. 1606–1615.
  29. Lysova A.A., Manin A.D., Golubenko D.V. et al. // J. Memb. Sci. 2025. V. 716. 123518.
  30. Manin A.D., Golubenko D.V., Yurova P.A., Yaroslavtsev A.B. // Mendeleev Commun. 2023. V. 33. P. 365–367.
  31. Golubenko D.V., Manin A.D., Wang Y. et al. // Desalination. 2022. V. 531. 115719.
  32. Golubenko D.V., Karavanova Y.A., Melnikov S.S. et al. // J. Memb. Sci. 2018. V. 563. P. 777–784.
  33. Karavanova Y.A., Kas’kova Z.M., Veresov A.G., Yaroslavtsev A.B. // Russ. J. Inorg. Chem. 2010. V. 55. P. 479–483.
  34. Li J., Zhou M.-li, Lin J.-yang et al. // J. Memb. Sci. 2015. V. 486. P. 89–96.
  35. Rehman D., Ahdab Y.D., Lienhard J.H. // Water Res. 2021. V. 199. 117171.
  36. Zhang W., Miao M., Pan J. et al. // Desalination. 2017. V. 411. P. 28–37.
  37. Lambert J., Avila-Rodriguez M., Durand G., Rakib M. // J. Memb. Sci. 2006. V. 280 (1–2). P. 219–225.
  38. Sata. T. // J. Memb. Sci. 1994. V. 93 (2). P. 117–135.
  39. Sata T., Sata T., Yang W. // J. Memb. Sci. 2002. V. 206. № 1–2. P. 31–60.
  40. Hosseini S.M., Alibakhshi H., Jashni E.et al. // J. Hazard. Mater. 2020. V. 381. 120884.
  41. Zhao C., Xue J., Ran F., Sun S. // Prog. Mater. Sci. 2013. V. 58, № 1. P. 76–150.
  42. Yurova, P.A.; Stenina, I.A.; Manin, A.D. et al. // Membr. Membr. Technol. 2024. V. 6. P. 55–62.
  43. Zhong S., Cui X., Fu T., Na H. // J. Power Sources. 2008. V. 180. P. 23–28.
  44. Falina I., Loza N., Loza S. et al. // Membranes. 2021. V. 11. 227.
  45. Salehi E., Hosseini S.M., Ansari S., Hamidi A. // J. Solid State Electrochem. 2016. V. 20. P. 371–377.
  46. Stenina I., Golubenko D., Nikonenko V., Yaroslavtsev A. // Int. J. Mol. Sci. 2020. V. 21. 5517.
  47. Pang X., Tao Y., Xu Y.et al. // J. Memb. Sci. 2020. V. 595. 117544.
  48. Kumar P., Suhag S., Mandal J.R., Shahi V.K. // J. Memb. Sci. 2024. V. 711. 123168.
  49. Karavanova Y.A., Fedina K.G., Yaroslavtsev A.B. // Inorg. Mater. 2011. V. 47. P. 329–333.
  50. Melnikov S., Bondarev D., Nosova E. // Membranes. 2020. V. 10. 346.
  51. Bondarev D., Melnikov S., Zabolotskiy V. // J. Memb. Sci. 2023. V. 675. 121510.
  52. Патент N 2807369 Российская Федерация, МПК B01D 71/40 (2006.01), B01D 71/06 (2006.01). Способ получения гомогенной анионообменной мембраны: 2023124254: заявл. 20.09.2023: опубл. 14.11.2023 / Бондарев Д. А., Ачох А. Р., Беспалов А. В., Заболоцкий В. И.
  53. Achoh A., Bondarev D., Melnikov S., Zabolotsky V. // Electrochem. 2024. V. 5. P. 393–406.
  54. Loza S., Loza N., Kutenko N., Smyshlyaev N. // Membranes. 2022. V. 12. 985.
  55. Protasov K.V., Shkirskaya S.A., Berezina N.P., Zabolotskii V.I. // Russ. J. Electrochem. 2010. V. 46. P. 1131–1140.
  56. Stenina I.A., P.A. Yurova, L. Novak et al. // Colloid Polym. Sci. 2021. V. 299. P. 719–728.
  57. Zabolotsky V.I., Achoh A.R., Lebedev K.A., Melnikov S.S. // J. Memb. Sci. 2020. V. 608. P. 118152.
  58. Mareev, S.A.; Evdochenko, E.; Wessling, M. et al. // J. Memb. Sci. 2020. V. 603. 118010.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Structural formula of the copolymer of N,N-diallyl-N,N-dimethylammonium chloride and ethyl methacrylate

Жүктеу (11KB)
3. Fig. 2. Scheme of the LEDC with non-flow concentration chambers: A – anion exchange membrane; K – cation exchange membrane; EC – electrode chamber; BK – buffer chamber; KO – desalination chamber; KK – concentration chamber.

Жүктеу (38KB)
4. Fig. 3. Specific electrical conductivity of the original (1) and bilayer (2) membranes in NaCl solutions.

Жүктеу (13KB)
5. Fig. 4. Concentration dependences of the integral coefficient of diffusion permeability in a NaCl solution for the initial (1) and bilayer (2) membranes.

Жүктеу (15KB)
6. Fig. 5. Dependence of specific energy consumption on current density with membrane pairs MF4SKl/MA-41 (1) and MF-4SKl5/MA-41 (2).

Жүктеу (19KB)
7. Fig. 6. Dependence of the potential drop in the sodium chloride solution on the initial (1) and bilayer (2) membrane on the current density

Жүктеу (16KB)
8. Fig. 8. Dependence of the concentration (a, b) and flux density (c, d) of Na+ (1) and Ca2+ (2) ions in the CC on the current density when using the membrane pair MF-4SKl/MA-41 (a, c) and MF4SKl5/MA-41 (b, d).

Жүктеу (66KB)
9. Fig. 7. Dependence of the magnitude of the potential drop in a solution of sodium and calcium chlorides on the original (1) and bilayer (2) membrane.

Жүктеу (11KB)
10. Fig. 9. Dependence of the solvent (water) flow density in the CC on the current density when using the membrane pair MF-4SKl/MA-41 (a) and MF-4SKl5/MA-41 (b).

Жүктеу (28KB)
11. Fig. 10. Dependence of specific energy consumption on current density when using the membrane pair MF-4SKl/MA-41 (a) and MF-4SKl5/MA-41 (b).

Жүктеу (23KB)
12. Fig. 11. Volt-ampere characteristic of a cation exchange membrane in a solution of calcium and sodium chlorides for the original (1) and bilayer (2) membranes

Жүктеу (13KB)
13. Fig. 12. Dependence of the coefficient of specific selective permeability on i/ilim when using the membrane pair MF-4SKl/MA-41 (a) and MF-4SKl5/MA-41 (b).

Жүктеу (24KB)

© Russian Academy of Sciences, 2024