Цилиарный нейротрофический фактор как потенциальный биомаркер церебральных патологий

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Цилиарный нейротрофический фактор (CNTF) – это плюрипотентный нейротрофический фактор с высоким нейропротекторным потенциалом, нейроцитокин, который продемонстрировал потенциал в терапии нейродегенеративных, психических и метаболических заболеваний. Доклинические данные подтверждают общую концепцию о его потенциальных нейропротекторных и трофических эффектах, а недавно полученные клинические данные подтверждают предположение о потенциальной роли CNTF в лечении нейродегенерации и ожирения. Ряд данных указывают на вовлеченность CNTF в стресс-реактивность и патогенез аффективных расстройств. Данные исследований уровней CNTF в инвазивном (кровь) и неинвазивном (слезы) биоматериале человека предполагают возможность его использования в качестве биомаркера определенных заболеваний головного мозга, хотя для подтверждения этого необходимо провести дополнительные исследования.

Полный текст

Доступ закрыт

Об авторах

А. А. Гудкова

ГБУЗ “Научно-практический психоневрологический центр имени З. П. Соловьева” Департамента здравоохранения города Москвы

Автор, ответственный за переписку.
Email: gudkov_ann@mail.ru
Россия, Москва

Список литературы

  1. Guo H., Chen P., Luo R., Zhang Y., Xu X., Gou X. // Protein Pept. Lett. 2022. V. 29. P. 815–828. doi: 10.2174/0929866529666220905105800.
  2. Stansberry W.M., Pierchala B.A. // Front. Mol. Neurosci. 2023. V. 16. 1238453. doi: 10.3389/fnmol.2023.1238453.
  3. Pasquin S., Sharma M., Gauchat J.F. // Cytokine Growth Factor Rev. 2015. V. 26. P. 507–515. doi: 10.1016/j.cytogfr.2015.07.007.
  4. Fuhrmann S., Grabosch K., Kirsch M., Hofmann H.D. // J. Comp. Neurol. 2003. V. 461. P. 111–122. doi: 10.1002/cne.10701.
  5. Rose-John S. //Cold Spring Harb. Perspect. Biol. 2018. V. 10. a028415. doi: 10.1101/cshperspect.a028415.
  6. Pasquin S., Sharma M., Gauchat J.F. // Cytokine. 2016. V. 82. P. 122–124. doi: 10.1016/j.cyto.2015.12.019.
  7. Neet K.E., Campenot R.B. // Cell. Mol. Life Sci. 2001. V. 58. P. 1021–1035. doi: 10.1007/PL00000917.
  8. Acheson A., Lindsay R.M. // Seminars in Neuroscience.1994. V. 6. P. 333–341. https://doi.org/10.1006/smns.1994.1042.
  9. Fargali S., Sadahiro M., Jiang C., Frick A.L., Indall T., Cogliani V., Welagen J., Lin W.J. Salton S.R. // J. Mol. Neurosci. 2012. V. 48. P. 654–9. doi: 10.1007/s12031-012-9790-9.
  10. Jablonka S., Dombert B., Asan E., Sendtner M. // J. Anat. 2014. V. 224. P. 3–14. doi: 10.1111/joa.12097.
  11. Emerich D.F., Thanos C.G. // Curr. Gene Ther. 2006. V. 6. P. 147–59. doi: 10.2174/156652306775515547.
  12. Zhou Y., Zhai S., Yang W. // Zhonghua Er Bi Yan Hou Ke Za Zhi. 1999. V. 34. P. 150–3. PMID: 12764805.
  13. Sleeman M.W., Anderson K.D., Lambert P.D., Yancopoulos G.D., Wiegand S.J. // Pharm. Acta. Helv. 2000. V. 74. P. 265–272. doi: 10.1016/s0031-6865(99)00050-3.
  14. Buzas B., Symes A.J., Cox B.M. // J. Neurochem. 1999. V. 72. P. 1882–9. doi: 10.1046/j.1471-4159.1999.0721882.x
  15. Fantuzzi G., Benigni F.M., Sironi M., Conni M., Carelli L., et al. // Cytokine. 1995. V. 7. P. 150–156.
  16. Hudgins S.N., Levison S.W. // Exp Neurol. 1998. V. 150. P. 171–182. doi: 10.1006/exnr.1997.6735.
  17. Mori M., Jefferson J.J., Hummel M., Garbe D.S. // J. Neurosci. 2008. V. 28. P. 5867–5869. doi: 10.1523/JNEUROSCI.1782-08.2008.
  18. Pierce R.C., Bari A.A. // Rev. Neurosci. 2001. V. 12. P. 95–110. doi: 10.1515/revneuro.2001.12.2.95.
  19. Vergara C., Ramirez B. // Brain. Res. Brain. Res. Rev. 2004. V. 47. P. 161–173. doi: 10.1016/j.brainresrev.2004.07.010.
  20. Marques M.J., Neto H.S. // Neurosci. Lett. 1997. V. 234. P. 43–46. doi: 10.1016/s0304-3940(97)00659-9.
  21. Kumon Y., Sakaki S., Watanabe H., Nakano K., Ohta S., Matsuda S., Yoshimura H. Sakanaka M. // Neurosci. Lett. 1996. V. 206. P. 141–144. doi: 10.1016/s0304-3940(96)12450-2.
  22. Li W., Wei D., Zhu Z., Xie X., Zhan S., Zhang R., Zhang G., Huang L. // Front. Aging Neurosci. 2021. V. 13. 587403. doi: 10.3389/fnagi.2020.587403.
  23. Garcia P., Youssef I., Utvik J.K., Florent-Béchard S., Barthélémy V., et al. // J. Neurosci. 2010. V. 30. P. 7516–7527. doi: 10.1523/JNEUROSCI.4182-09.2010.
  24. Blanchard J., Wanka L., Tung Y.C., Cárdenas-Aguayo Mdel C., LaFerla F.M., Iqbal K., Grundke-Iqbal I. // Acta Neuropathol. 2010. V. 120. P. 605–621. doi: 10.1007/s00401-010-0734-6.
  25. Peruga I., Hartwig S., Merkler D., Thöne J., Hovemann B., Juckel G., Gold R., Linker R.A. Behav. Brain Res. 2012. V. 229. P. 325–332. doi: 10.1016/j.bbr.2012.01.020.
  26. Jia C., Brown R.W., Malone H.M., Burgess K.C., Gill, W.D. Keasey M.P., Hagg T. // Psychoneuroendocrinology. 2019. V. 100. P. 96–105. doi: 10.1016/j.psyneuen.2018.09.038.
  27. Jia C., Drew Gill W., Lovins C., Brown R.W., Hagg T. // Female-specific role of ciliary neurotrophic factor in the medial amygdala in promoting stress responses. Neurobiol. Stress. 2022. V. 17. 100435. doi: 10.1016/j.ynstr.2022.100435.
  28. Jia C., Gill W.D., Lovins C., Brown R.W., Hagg T. // Astrocyte focal adhesion kinase reduces passive stress coping by inhibiting ciliary neurotrophic factor only in female mice. Neurobiol. Stress. 2024. V. 30. 100621. doi: 10.1016/j.ynstr.2024.100621.
  29. Alpár A., Zahola P., Hanics J., Hevesi Z., Korchynska S., et al. // Hypothalamic CNTF volume transmission shapes cortical noradrenergic excitability upon acute stress. EMBO J. 2018. V. 37. e100087. doi: 10.15252/embj.2018100087.
  30. Girotti M, Silva JD, George CM, Morilak DA. // Ciliary neurotrophic factor signaling in the rat orbitofrontal cortex ameliorates stress-induced deficits in reversal learning. Neuropharmacology. 2019. V. 160. 107791. doi: 10.1016/j.neuropharm.2019.107791.
  31. Mizushige T., Nogimura D., Nagai A., Mitsuhashi H., Taga Y., Kusubata M., Hattori S., Kabuyama Y. // J. Nutr. Sci. Vitaminol. (Tokyo). 2019. V. 65. P. 251–257. doi: 10.3177/jnsv.65.251.
  32. Grünblatt E., Hu P.E., Bambula M., Zehetmayer S., Jungwirth S., Tragl K.H., Fischer P., and Riederer P. // J. Affect. Disord. 2006. V. 96. P. 111–116. doi: 10.1016/j.jad.2006.05.008.
  33. Druzhkova T., Pochigaeva K., Yakovlev A., Kazimirova E., Grishkina M., Chepelev A., Guekht A., Gulyaeva N. // Metab. Brain. Dis. 2019. V. 34. P. 621–629. doi: 10.1007/s11011-018-0367-3.
  34. Duff E., Baile C.A. // Nutr. Rev. 2003. V. 61. P. 423–426. doi: 10.1301/nr.2003.dec.423–426.
  35. Anderson K.D., Lambert P.D., Corcoran T.L., Murray J.D., Thabet K.E., Yancopoulos G.D., Wiegand S.J. // J. Neuroendocrinol. 2003. V. 15. P. 649–660. doi: 10.1046/j.1365-2826.2003.01043.x.
  36. Roth S.M., Metter E.J., Lee M.R., Hurley B.F., Ferrell R.E. // J. APl. Physiol. 2003. V. 95. P. 1425–1430. doi: 10.1152/jaPlphysiol.00516.2003.
  37. Matthews V.B., Febbraio M.A. // J. Mol. Med. (Berl). 2008. V. 86. P. 353–361. doi: 10.1007/s00109-007-0286-y.
  38. Allen T.L., Matthews V.B., Febbraio M.A. // Handb. Exp. Pharmacol. 201. V. 203. P. 179–199. doi: 10.1007/978-3-642-17214-4_9.
  39. Vavilina I.S., Shpak A.A., Druzhkova T.A., Guekht A.B., Gulyaeva N.V. // Neurochem. J. 2023. V. 17. P. 702–714. https://doi.org/10.1134/S1819712423040268
  40. Shpak A.A., Guekht A.B., Druzhkova T.A., Kozlova K.I., Gulyaeva N.V. // Mol. Vis. 2017. V. 17. P. 799–809. PMID: 29225456.
  41. Shpak A., Guekht A., Druzhkova T., Rider F., Gudkova A., Gulyaeva N. // Neurol. Sci. 2022. V. 43. P. 493–498. doi: 10.1007/s10072-021-05338-4.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024