Modeling Coordinatively Unsaturated Structures in Mixed Mg-Al Oxides as Active Sites for Dehydrogenation and Dehydration of Ethanol

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Processes of dehydrogenation and dehydration of ethanol on a Lewis acid site (LAS) of mixed Mg–Al oxide have been studied by density-functional theory approach. The structure of the active site of the mixed oxide system has been proposed. Possible intermediates have been studied and the mechanisms of these processes occurring on LAS of mixed oxide containing aluminum or chromium have been suggested. Isomorphous substitution of aluminum for chromium in the structure of mixed oxide results in a decrease of the energetic barrier for the process of ethanol dehydrogenation.

Толық мәтін

Рұқсат жабық

Авторлар туралы

М. Мikhailov

N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences

Email: lmk@ioc.ac.ru
Ресей, Moscow

L. Kustov

Lomonosov Moscow State University; N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: lmk@ioc.ac.ru
Ресей, Moscow; Moscow

Әдебиет тізімі

  1. Ndou A.S., Plint N., Coville N.J. // Appl. Catal. A: Gen. 2003. V. 251. P. 337.
  2. Kozlowski J.T., Davis R.J. // ACS Catal. 2013. V. 3. P. 1588.
  3. Choudary B.M., Kantam M.L., Neeraja V., Rao K.K., Figueras F., Delmotte L. // Green Chem. 2001. V. 3. P. 257.
  4. Cerveny J., Splıchalova J., Kacer P., Kovanda F., Kuzma M., Cerveny L. // J. Mol. Catal. A. 2008. V. 285. P. 150.
  5. Sharma S.K., Parikh P.A., Jasra R.V. // J. Mol. Catal. A. 2007. V. 278. P. 135.
  6. Cantrell D.G., Gillie L.J., Lee A.F., Wilson K. // Appl. Catal. A: Gen. 2005. V. 287. P. 183.
  7. Xie W., Liu Y., Chun H. // Catal. Lett. 2012. V. 142. P. 352.
  8. Abello S., Medina F., Tichit D., Perez-Ramírez J., Groen J.C., Sueiras J.E., Salagre P., Cesteros Y. // Chem. Eur. J. 2005. V. 11. P. 728.
  9. Maru M.S., Ram S., Shukla R.S. // Кинетика и катализ. 2023. T. 64. № 3. C. 305 (Maru M.S., Ram S., Shukla R.S. // Kinet. Catal. 2023. V. 63. № 3. P. 276.)
  10. Guerrero-Urbaneja P., Garcıa-Sancho C., Moreno-Tost R., Merida-Robles J., Santamarıa-Gonzalez J., Jimenez-Lopez A., Maireles-Torres P. // Appl. Catal. A: Gen. 2014. V. 470. P. 199.
  11. Бухтиярова М.В., Нуждин А.Л., Кардаш Т.Ю., Бухтияров А.В., Герасимов Е.Ю., Романенко А.В. // Кинетика и катализ. 2019. T. 60. № 3. С. 364. (Bukhtiyarova M.V., Nuzhdin A.L., Kardash N.Yu., Bukhtiyarov A.V., Gerasimov E.Yu., Romanenko A.V. // Kinet. Catal. 2019. V. 60. № 3. P. 343.)
  12. Liu P., Derchi M., Hensen E.J.M. // Appl. Catal. B: Environ. 2014. V. 144. P. 135.
  13. Guerrero-Urbaneja P., Garcıa-Sancho C., Moreno-Tost R., Merida-Robles J., Santamarıa-Gonzalez J., Jimenez-Lopez A., Maireles-Torres P. // Appl. Catal. A: Gen. 2014. V. 470. P. 199.
  14. Jimenez-Sanchidrian C., Ruiz J.R. // Appl. Catal. A: Gen. 2014. V. 469. P. 367.
  15. Navajas A., Campo I., Arzamendi G., Hernandez W.Y., Bobadilla L.F., Centeno M.A., Odriozola J.A., Gandia L.M. // Appl. Catal. B: Environ. 2010. V. 100. P. 299.
  16. Liu P., Derchi M., Hensen E.J.M. // Appl. Catal. A: Gen. 2013. V. 467. P. 124.
  17. Tichit D., Coq B. // CATTECH. 2003. V. 7. P. 206.
  18. Tichit D., Lutic D., Coq B., Durand R., Teissier R. // J. Catal. 2003. V. 219. P. 167.
  19. Tichit D., Gerardin C., Durand R., Coq B. // Top. Catal. 2006. V. 39. P. 89.
  20. Xu Z.P., Zhang J., Adebajo M.O., Zhang H., Zhou C.H. // Appl. Clay Sci. 2011. V. 53. P. 139.
  21. Millange F., Walton R.I., O’Hare D. // J. Mater. Chem. 2000. V. 10. P. 1713.
  22. Thomas G.S., Radha A.V., Kamath P.V., Kannan S. // J. Phys. Chem. B. 2006. V. 110. P. 12365.
  23. Sato T., Kato K., Endo T., Shimada M. // React. Solids. 1986. V. 2. P. 253.
  24. Бессуднов А.Э., Кустов Л.М., Мишин И.В., Михайлов М.Н. // Изв. АН. Сер. хим. 2017. V. 4. P. 666. (Bessudnov A.E., Kustov L.M., Mishin I.V., Mijhailov M.N. // Russ. Chem. Bull. 2017. V. 4. P. 666.)
  25. Knözinger G. // Angew. Chem. Int. Ed. Engl. 1968. V. 7. P. 791.
  26. Morterra C., Ghiotti G., Boccuzzi F., Coluccia S. // J. Catal. 1978. V. 51. P. 299.
  27. Feng G., Huo C.F., Deng C.M., Huang L., Li Y.W., Wang J., Jiao H.J. // Mol. Catal. A. 2009. V. 304. P. 58.
  28. Clayborne P.A., Nelson T.C., De Vore T.C. // Appl. Catal. A: Gen. 2004. V. 257. P. 225.
  29. Roy S., Mpourmpakis G., Hong D.-Y., Vlachos D.G., Bhan A., Gorte R.J. // ACS Catal. 2012. V. 2. P. 1846.
  30. Fang Z., Wang Y., Dixon D.A. // J. Phys. Chem. C 2015. V. 119. № 41. P. 23413.
  31. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648.
  32. Lee C., Yang W., Parr R.G. // Phys. Rev. B 1988. V. 37. P. 785.
  33. Vosko S.H., Wilk L., Nusair M. // Can. J. Phys. 1980. V. 58. P. 1200.
  34. Lee C., Yang W. // Phys. Rev. B. 1988. V. 45. P. 13244.
  35. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 1372.
  36. Stevens W.J., Krauss M., Basch H., Jasien P.G. // Can. J. Chem. 1992. V. 70. P. 612.
  37. Granovsky A.A. // Firefly version 8.2.0. http://classic.chem.msu.su/gran/firefly/index.html.
  38. Игнатов С.К., Багатурьянц А.А., Разуваев А.Г., Алфимов М.В., Мотовщикова М.В., Додонов В.А. // Изв. РАН. Сер. Хим. 1998. Т. 47. № 7. С. 1257. (Ignatov S.K., Bagatur’yants A.A., Razuvaev A.G., Alfimov M.V., Motovshchikova M.B., Dodonov V.A. // Russ. Chem. Bull. 1998. V. 47. № 7. P. 1257.)
  39. Bagaturyants A.A., Ignatov S.K., Razuvaev A.G., Gropen O. // Mater. Sci. Semiconductor Proc. 2000. V. 3. P. 71.
  40. Solans-Monfort X., Branchadell V., Sodupe M., Sierka M., Sauer J. // J. Chem. Phys. 2004. V. 121. P. 6034.
  41. Николаева Е.В., Мамонов Н.А., Кустов Л.М., Михайлов М.Н. // Изв. АН. Сер. хим. 2015. Т. 64. № 2. С. 269. (Nikolaeva E.V., Mamonov N.A., Kustov L.M., Mikhailov M.N. // Russ. Chem. Bull. 2015. V. 64. № 2. P. 269.)
  42. Bailly M., Chizallet C., Costentin G., Krafft J., Lauron-Pernot H., Che M. // J. Catal. 2005. V. 235. P. 413.
  43. Kozlowski J.T., Aronson M.T., Davis R. // Appl. Catal. B: Environ. 2010. V. 96. P. 508.
  44. Díez V.K., Apesteguía C.R., Di Cosimo J.I. // Catal. Today. 2000. V. 63. P. 53.
  45. Shinohara Y., Satozono H., Nakajima T., Suzuki S., Mishima S. // J. Chem. Software. 1998. V. 4. P. 41.
  46. Kozlowski J.T., Davis R.J. // ACS Catal. 2013. V. 3. P. 1588.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Selection of the mixed oxide cluster

Жүктеу (193KB)
3. Scheme 1. Scheme of ethanol dehydrogenation process on LCC with aluminium

Жүктеу (51KB)
4. Fig. 2. Mechanism of interaction of ethanol molecule with the active centre containing aluminium in the dehydrogenation reaction

Жүктеу (171KB)
5. Scheme 2. Main steps of ethanol dehydration process on acid-base centres including aluminium atom

Жүктеу (58KB)
6. Fig. 3. Mechanism of interaction of ethanol molecule with the active centre containing aluminium for the dehydration reaction

Жүктеу (190KB)
7. Scheme 3. Main steps of the ethanol dehydrogenation process on the acid-base centre containing chromium

Жүктеу (57KB)
8. Translation results Fig. 4. Mechanism of interaction of ethanol molecule with the active centre containing aluminium for the dehydrogenation reaction

Жүктеу (159KB)
9. Scheme 4. Main steps of the ethanol dehydration process on the acid-base centre containing chromium

Жүктеу (58KB)
10. Fig. 5. Mechanism of interaction of ethanol molecule with the active centre containing aluminium for the dehydration reaction

Жүктеу (172KB)
11. Fig. 6. Total energy variation for the ethanol dehydrogenation process on a mixed oxide cluster with aluminium and chromium

Жүктеу (121KB)
12. Fig. 7. Total energy variation for the ethanol dehydration process on a mixed oxide cluster with aluminium and chromium

Жүктеу (122KB)