A mechanism of magnetic hysteresis in heterogeneous Gd-Zr-Co-Cu-Fe alloys

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The behavior of the (Gd, Zr)(CoCuFe)Z alloys samples in magnetic fields oriented at different angles to their easy magnetization axis has been studied. The angular dependences of magnetization and coercivity were constructed. The hysteresis loops of the two main structural components of the samples were constructed based on images of the domain structure in demagnetizing fields. An analysis of the obtained results was carried out under assumption of the mixed mechanism of hysteresis in these alloy family.

About the authors

E. M. Semenova

Tver State University

Author for correspondence.
Email: Semenova_E_M@mail.ru
Russian Federation, Tver

M. B. Lyakhova

Tver State University

Email: Semenova_E_M@mail.ru
Russian Federation, Tver

P. A. Rakunov

Tver State University

Email: Semenova_E_M@mail.ru
Russian Federation, Tver

A. Yu. Karpenkov

Tver State University

Email: Semenova_E_M@mail.ru
Russian Federation, Tver

Yu. V. Konyukhov

National University of Science and Technology MISIS

Email: Semenova_E_M@mail.ru
Russian Federation, Moscow

References

  1. Coey J.M.D. // Engineering. 2020. V. 6. No. 2. P. 119.
  2. Liu S. // Chin. Phys. B. 2019. V. 28. No. 1. Art. No. 017501.
  3. Tang W., Zhang Y., Hadjipanayis G.C. // IEEE Trans. Magn. 2000. V. 36. No. 5. P. 3294.
  4. Пушкарь Ю.Е., Ляхова М.Б., Бабушкин Ю.В. // Высокочистые вещества. 1988. № 4. С. 164.
  5. Rong C., Zhang J, Zhang H. et al. // J. Magn. Magn. Mater. 2004. V. 279. No. 2-3. P. 143.
  6. Suponev N.P., Grechishkin R.M., Lyakhova M.B., Pushkar Yu.E // J. Magn. Magn. Mater. 1996. V. 157. P. 376.
  7. Lyakhova M.B., Semenova E.M., Ivanov R.P. // Met. Sci. Heat Treat. 2015. V. 56. P. 602.
  8. Abhyankar A.C., Gopalan R., Singh A.K. et al. // J. Mater. Sci. 2004. V. 39. P. 3433.
  9. Urzhumtsev A., Maltseva V., Volegov A. // J. Magn. Magn. Mater. 2022. V. 551. P. 169143.
  10. Лилеев А.С., Пинкас В.В. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 876; Lileev A.S., Pinkas V.V. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 795.
  11. Ляхова М.Б., Семенова Е.М., Супонев Н.П., Иванов Р.П. // Физ.-хим. асп. изуч. класт. нанострукт. и наноматер. 2011. № 3. С. 114.
  12. Fidler J., Skalicky P., Rothwarf F. // IEEE Trans. Magn. 1983. V. 19. No. 5. P. 2041.
  13. Karpenkov A.Yu., Skokov K.P., Dunaeva G.G. et al. // J. Phys. D. Appl. Phys. 2022. V. 55. Art. No. 455002.
  14. Stoner E.C., Wohlfarth E.P. // Phil. Trans. Royal Soc. London. Ser. Sci. Phys. 1948. V. 240-A. No. 826. P. 599.
  15. Кринчик Г.С. Физика магнитных явлений. М.: МГУ, 1976. 367 с.
  16. Мишин Д.Д., Бирюков В.С., Супонев Н.П. // В кн.: Сплавы редких и тугоплавких металлов с особыми физическими свойствами. М.: Наука, 1979. С. 155.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Images of complete hysteresis loops (a) and demagnetizing parts of hysteresis loops (b) in reduced units for Gd0.85Zr0.15(Co0.70Cu0.09Fe0.21)Z samples.

Download (288KB)
3. Fig. 2. Image of the microstructure (a, b) and domain structure (c, d) on the basal plane of Gd0.85Zr0.15(Co0.70Cu0.09Fe0.21)Z samples demagnetized by a reverse field with z = 6.0 (a, c) and 6.4 (b, d), presented on the same scale.

Download (1MB)
4. Fig. 3. Images of hysteresis loops (a, b) and local coercivity intervals (c, d) of structural components A and B of Gd0.85Zr0.15(Co0.70Cu0.09Fe0.21)Z samples.

Download (457KB)
5. Fig. 4. Angular dependences of the coercive force (a, b) and field dependences ∆σ (c, d) for Gd0.85Zr0.15(Co0.70Cu0.09Fe0.21)Z samples.

Download (493KB)

Copyright (c) 2024 Russian Academy of Sciences