Quantum-chemical simulation of the C60 fullerenes interaction with allyl chloride vinyl-type model growth radicals

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Stepwise fourfold addition reactions of vinyl chloride type of allyl chloride growth radicals to fullerene C60 leading to formation of adduct’s almost all possible types have been considered. The reactions product structures have been analyzed and the thermal characteristics, such as thermal effects and enthalpies of activation, have been calculated. At the radical-initiated interaction of allyl chloride and fullerene C60, up to three allyl chloride growth radicals’ addition is possible. In this case, the trisadducts are stable allyl type radicals, which can attach a fourth allyl chloride radical to form molecular products.

Full Text

Restricted Access

About the authors

D. R. Diniakhmetova

Ufa Federal Research Centre of the Russian Academy of Sciences

Author for correspondence.
Email: diniakhmetova@rambler.ru

Ufa Institute of Chemistry

Russian Federation, Ufa

S. V. Kolesov

Ufa Federal Research Centre of the Russian Academy of Sciences

Email: diniakhmetova@rambler.ru

Ufa Institute of Chemistry

Russian Federation, Ufa

References

  1. T. Cao, S.E. Webber. Macromolecules. 28 (10), 3741 (1995). https://doi.org/10.1021/ma00114a033
  2. T. Cao, S.E. Webber. Macromolecules. 29 (11), 3826 (1996). https://doi.org/10.1021/ma9517761
  3. D. Stewart, C.T. Imrie. Chem. Commun. (11), 1383 (1996). https://doi.org/10.1039/CC9960001383
  4. N. Arsalani, K.E. Geckeler. Fullerene Sci. Technol. 4 (5), 897 (1996). https://doi.org/10.1080/10641229608001151
  5. M. Seno, H. Fukunaga, T. Sato. J. Polym. Sci., Polym. Chem. 36 (16), 2905 (1998). https://doi.org/10.1002/(SICI)1099-0518(19981130) 36:16<2905::AID-POLA9>3.0.CO;2-9
  6. Y. Chen, K.-C. Lin. J. Polym. Sci., Polym. Chem. 37 (15), 2969 (1999). https://doi.org/10.1002/(SICI)1099-0518(19990801) 37:15<2969::AID-POLA30>3.0.CO;2-G
  7. W.T. Ford, T. Graham, T.H. Mourey. Macromolecules. 30 (21), 6422 (1997). https://doi.org/10.1021/ma970238g
  8. W.T. Ford, T. Nishioka, S.C. McCleskey et al. Macromolecules. 33 (7), 2413 (2000). https://doi.org/10.1021/ma991597+
  9. C. Schröder. Fullerene Sci. Technol. 9 (3), 281 (2001). https://doi.org/10.1081/FST-100104494
  10. M. Seno, M. Maeda, T. Sato. J. Polym. Sci., Polym. Chem. 38 (14), 2572 (2000). https://doi.org/10.1002/1099-0518(20000715) 38:14<2572::AID-POLA80>3.0.CO;2-3
  11. S.V. Kurmaz, A.N. Pyryaev, N.A. Obraztsova. Polym. Sci. Ser. B. 53 (9-10), 497 (2011). https://doi.org/10.1134/S156009041109003X
  12. R. Singh, D. Srivastava, S.K. Upadhyay. J. Macromol. Sci. A. 48 (8), 595 (2011). https://doi.org/10.1080/15226514.2011.586267
  13. R. Singh, D. Srivastava, S.K. Upadhyay. Polym. Sci. Ser. B. 54 (1-2), 88 (2012). https://doi.org/10.1134/S1560090412020066
  14. R. Singh, D. Srivastava, S.K. Upadhyay. Des. Monomers Polym. 15 (3), 311 (2012). https://doi.org/10.1163/156855511X615704
  15. S.V. Kurmaz, V.V. Nedel’ko, E.O. Perepelitsina et al. Russ. J. Gen. Chem. 83 (3), 496 (2013). https://doi.org/10.1134/S107036321303016X
  16. R.K. Yumagulova, S.I. Kuznetsov, D.R. Diniakhmetova, et al. Kinet. Catal. 57 (3), 380 (2016). https://doi.org/10.1134/S0023158416030150
  17. J. Cousseau et al. ECS Meet. Abstr.Abstract 865 (2006). https://doi.org/10.1149/MA2005-01/21/865
  18. C.-W. Huang, Y.-Y. Chang, C.-C. Cheng et al. Polymers. 14 (22), 4923 (2022). https://doi.org/10.3390/polym14224923
  19. A.V. Baskar, M.R. Benzigar, S.N. Talapaneni et al. Adv. Funct. Mater., 32 (6), 2106924 (2022). https://doi.org/10.1002/adfm.202106924
  20. K. Sakakibara, A. Wakiuchi, Y. Murata et al. Polym. Chem. 11 (27), 4417 (2020). https://doi.org/10.1039/D0PY00458H
  21. E.G. Atovmyan, Russian Chemical Bulletin. 66 (3), 567 (2017). https://doi.org/10.1007/s11172-017-1773-0
  22. R.K. Yumagulova, S.V. Kolesov. Bulletin of Bashkir university. 25 (1), 47 (2020). https://doi.org/10.33184/bulletin-bsu-2020.1.8 [In Russian]
  23. K.M. Rogers, P.W. Fowler. Chem. Commun. 23, 2357 (1999). https://doi.org/10.1039/A905719F
  24. I.N. Ioffe, A.A. Goryunkov, O.V. Boltalina et al. Fullerenes, Nanotubes and Carbon Nanostructures. 12 (1–2), 169 (2005). https://doi.org/10.1081/FST-120027152
  25. D.Sh. Sabirov, R.G. Bulgakov, Chem. Phys. Lett. 506 (1–3), 52 (2011). https://doi.org/10.1016/j.cplett.2011.02.040
  26. N.P. Evlampieva, A.V. Yakimanskii, A.V. Dobrodumov et al. Russ. J. Gen. Chem. 75 (5), 751 (2005). https://doi.org/10.1007/s11176-005-0313-z
  27. D.Sh. Sabirov, R.R. Garipova, R.G. Bulgakov, J. Phys. Chem. A. 117 (49), 13176 (2013). https://doi.org/10.1021/jp409845q
  28. Handbook of Fullerene Science and Technology / Eds. Lu X., Akasaka T., Slanina Z. Singapore: Springer, 2021. Part II. P. 541.
  29. D.R. Diniakhmetova, A.K. Frizen, R.K. Yumagulova et al. Polymer Science. Series B. 60 (3), 414 (2018). https://doi.org/10.1134/S156009041803003X
  30. D.R. Diniakhmetova, A.K. Friesen, S.V. Kolesov. Int. J. Quantum Chem. 116 (7), 489 (2016). https://doi.org/10.1002/qua.25071
  31. D.R. Diniakhmetova, A.K. Friesen, S.V. Kolesov. Int. J. Quantum Chem. 120 (18), e26335 (2020). https://doi.org/10.1002/qua.26335
  32. M.R.J. Sarvestani, Z. Doroudi. Rus. J. Phys. Chem. B. 16 (5), 820 (2022). https://doi.org/10.1134/S1990793122050098
  33. F. Azarakhshi, M. Khaleghian. Rus. J. Phys. Chem. B. 15 (1), 170 (2021). https://doi.org/10.1134/S1990793121010152
  34. F. Akman. Rus. J. Phys. Chem. B. 15 (3), 517 (2021). https://doi.org/10.1134/S1990793121030027
  35. R.A. Sadykov, S.L. Khursan, A.A. Sukhanov et al. Rus. J. Phys. Chem. B. 17 (6). 1251 (2023). https://doi.org/10.1134/S1990793123060209
  36. A.H. Davtyan, Z.O. Manukyan, S.D. Arsentev et al. Rus. J. Phys. Chem. B. 17 (2). 336 (2023). https://doi.org/10.1134/S1990793123020239
  37. D.N. Laikov, PRIRODA, Electronic Structure Code, Version 6, 2006.
  38. J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77 (18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  39. D.N. Laikov, Y.A. Ustynyuk. Russ. Chem. Bull. Int. Ed., 54, 820 (2005). https://doi.org/10.1007/s11172-005-0329-x
  40. D.Sh. Sabirov, R.G. Bulgakov. Comput. Theor. Chem. 963 (1), 185 (2011). https://doi.org/10.1016/j.comptc.2010.10.016
  41. V.V. Zverev, V.I. Kovalenko, I.P. Romanova et al. Int. J. Quantum Chem. 107 (13), 2442 (2007). https://doi.org/10.1002/qua.21373
  42. E.Ya. Misochko, A.V. Akimov, V.A. Belov et al. J. Chem. Phys. 127, 084301 (2007). https://doi.org/10.1063/1.2768350
  43. A.F. Shestakov. Russ. J. Gen. Chem. 78 (4), 811 (2008). https://doi.org/10.1134/S1070363208040403
  44. E.W. Godly, R. Taylor, Pure Appl. Chem. 69 (7), 1411 (1997). https://doi.org/10.1351/pac199769071411
  45. R.J. Taylor, J. Chem. Soc. Perkin Trans. 2, 813 (1993).
  46. N.V. Ulitin, K.A. Tereshchenko, A.K. Friesen et al. Int. J. Chem. Kinet. 50 (10), 742 (2018). https://doi.org/10.1002/kin.21209
  47. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmanil, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox. Gaussian 09, Revision C.01, Gaussian, Inc.: Wallingford CT, 2010.
  48. D.R. Diniakhmetova, A.K. Friesen, S.V. Kolesov. Rus. J. Phys. Chem. B. 14 (6), 922 (2020). https://doi.org/10.1134/S1990793120060032
  49. P. J. Krusic, E. Wasserman, P. N. Keizer et al. Science. 254 (5035), 1183 (1991). https://doi.org/10.1126/science.254.5035.1183

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic arrangement of atoms in the fullerenyl part of the adduct RС60•, through which the addition of the second propagating radical AX was carried out.

Download (147KB)
3. Formula 1

Download (37KB)
4. Fig. 2. The structure of 1,4-C60R2, the arrangement of atoms through which the third growth radical AX was added to 1,4-C60R2.

Download (93KB)
5. Scheme 1. Addition of propagating radicals AX to 1,4-C60R2 at the radilene vertices and thermodynamic characteristics of the corresponding reactions (ΔH° and ∆H≠, kJ/mol)

Download (149KB)
6. Scheme 2. Arrangement of atoms with maximum spin density in 1,4,11- and 1,4,15-R3C60•

Download (54KB)
7. Scheme 3. The arrangement of atoms with the maximum spin density (X, Y, Z) in 1,4,30- (a) and 1,4,20-, 1,4,39-, 1,4,41-, 1,4,58-R3С60• (b) relative to the third attached radical

Download (39KB)

Copyright (c) 2024 Russian Academy of Sciences