Противотуберкулезное действие синтетического пептида LKEKK

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Исследована активность синтетического пептида LKEKK в мышиной модели туберкулеза, индуцированного штаммом Mycobacterium bivis-bovinus 8. Терапия пептидом (одна внутрибрюшинная инъекция в дозах 0.1, 1 и 10 мкг/кг в течение пяти дней) достоверно снижала индекс повреждения легких мышей по сравнению с животными контрольных групп (без лечения и лечение изониазидом). С помощью [3H]LKEKK показано, что высокая чувствительность перитонеальных макрофагов и спленоцитов инфицированных мышей к пептиду сохранялась по крайней мере в течение трех недель (Kd 18.6 и 16.7 нМ для мембран макрофагов и спленоцитов соответственно). Исследование продукции цитокинов спленоцитами инфицированных мышей показало, что на 24-й день после обработки пептидом (дозы 1 и 10 мкг/кг) секреция IL-2 восстанавливалась до уровня, наблюдаемого у неинфицированных животных. Продукция IFN-γ клетками селезенки инфицированных мышей после обработки пептидом также достоверно увеличивались. Одновременно в спленоцитах снижалась продукция IL-4. Кроме того, лечение пептидом стимулировало фагоцитарную активность перитонеальных макрофагов, которая была снижена вследствие туберкулезной инфекции. Таким образом, синтетический пептид LKEKK повышал эффективность противотуберкулезной терапии, а также силу иммунного ответа. Пептид может быть использован в комплексной терапии тубеокулеза.

Полный текст

Доступ закрыт

Об авторах

Е. В. Наволоцкая

Филиал ФГБУН ГНЦ “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН

Автор, ответственный за переписку.
Email: navolotskaya@bibch.ru
Россия, 142290 Пущино, просп. Науки, 6

Д. В. Зинченко

Филиал ФГБУН ГНЦ “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН

Email: navolotskaya@bibch.ru
Россия, 142290 Пущино, просп. Науки, 6

А. А. Колобов

ГНЦ РФ Государственный научно-исследовательский институт особо чистых биопрепаратов

Email: navolotskaya@bibch.ru
Россия, 197110 Санкт-Петербург, ул. Пудожская, 7

Ю. А. Золотарев

ФГБУН ГНЦ “Институт молекулярной генетики” РАН

Email: navolotskaya@bibch.ru
Россия, 123182 Москва, пл. Акад. Курчатова, 2

А. Н. Мурашев

Филиал ФГБУН ГНЦ “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН

Email: navolotskaya@bibch.ru
Россия, 142290 Пущино, просп. Науки, 6

Список литературы

  1. Churchyard G., Kim P., Shah N.S., Rustomjee R., Gandhi N., Mathema B., Dowdy D., Kasmar A., Cardenas V. // J. Infect. Dis. 2017. V. 216. P. S629–S635. https://doi.org/10.1093/infdis/jix362
  2. Furin J., Cox H., Pai M. // Lancet. 2019. V. 393. P. 1642–1656. https://doi.org/10.1016/S0140-6736(19)30308-3
  3. Natarajan A., Beena P.M., Devnikar A.V., Mali S. // Indian. J. Tuberc. 2020. V. 67. P. 295–311. https://doi.org/10.1016/j.ijtb.2020.02.005
  4. Jacobo-Delgado Y.M., Rodríguez-Carlos A., Serrano C.J., Rivas-Santiago B. // Front. Immunol. 2023. V. 14. P. 1194923. https://doi.org/10.3389/fimmu.2023.1194923
  5. Chiaradia L., Lefebvre C., Parra J., Marcoux J., Burlet-Schiltz O., Etienne G., Tropis M., Daffé M. // Sci. Rep. 2017. V. 7. P. 12807. https://doi.org/10.1038/s41598-017-12718-4
  6. Stokas H., Rhodes H.L., Purdy G.E. // Tuberculosis. 2020. V. 125. P. 102007. https://doi.org/10.1016/j.tube.2020.102007
  7. Grzegorzewicz A.E., de Sousa-d’Auria C., McNeil M.R., Huc-Claustre E., Jones V., Petit C., Angala S.K., Zemanová J., Wang Q., Belardinelli J.M., Gao Q., Ishizaki Y., Mikušová K., Brennan P.J., Ronning D.R., Chami M., Houssin C., Jackson M. // J. Biol. Chem. 2016. V. 291. P. 18867–18879. https://doi.org/10.1074/jbc.M116.739227
  8. Singh P., Rameshwaram N.R., Ghosh S., Mukhopadhyay S. // Future Microbiol. 2018. V. 13. P. 689– 710. https://doi.org/10.2217/fmb-2017-0135
  9. Singh G., Kumar A., Maan P., Kaur J. // Curr. Drug Targets. 2017. V. 18. P. 1904–1918. https://doi.org/10.2174/1389450118666170711150034
  10. Khadela A., Chavda V.P., Postwala H., Shah Y., Mistry P., Apostolopoulos V. // Vaccines (Basel). 2022. V. 10. P. 1740. https://doi.org/10.3390/vaccines10101740
  11. Navolotskaya E.V., Sadovnikov V.B., Zinchenko D.V., Vladimirov V.I., Zolotarev Y.A., Lipkin V.M., Murashev A.N. // Russ. J. Bioorg. Chem. 2019. V. 45. P. 122–128. https://doi.org/10.1134/S1068162019020092
  12. Navolotskaya E.V., Sadovnikov V.B., Zinchenko D.V., Zav’yalov V.P., Murashev A.N. // J. Clin. Exp. Immunol. 2021. V. 6. P. 356–361. https://doi.org/doi.org/10.33140/JCEI.06.05.02
  13. Navolotskayaa E.V., Zinchenkoa D.V., Murashev A.N. // Russ. J. Bioorg. Chem. 2023. V. 49. P. 35–40. https://doi.org/10.1134/S106816202301020X
  14. Navolotskaya E.V., Sadovnikov V.B., Zinchenko D.V., Murashev A.N. // J. Clin. Exp. Immunol. 2023. V. 8. P. 590–595. https://doi.org/10.33140/JCEI.08.03.01
  15. Ellner J.J. // J. Lab. Clin. Med. 1997. V. 130. P. 469– 475. https://doi.org/10.1016/s0022-2143(97)90123-2
  16. Estrada García I., Hernández Pando R., Ivanyi J. // Front. Immunol. 2021. V. 12. P. 684200. https://doi.org/10.3389/fimmu.2021.684200
  17. Torres-Juarez F., Trejo-Martínez L.A., Layseca-Espinosa E., Leon-Contreras J.C., Enciso-Moreno J.A., Hernandez-Pando R., Rivas-Santiago B. // Microb. Pathog. 2021. V. 153. P. 104768. https://doi.org/10.1016/j.micpath.2021.104768
  18. Kaufmann S.H., Ladel C.H., Flesch I.E. // Ciba Found Symp. 1995. V. 195. P. 123–132. https://doi.org/10.1002/9780470514849.ch9
  19. Mustafa T., Phyu S., Nilsen R., Jonsson R., Bjune G. // Scand. J. Immunol. 2000. V. 51. P. 548–556. https://doi.org/10.1046/j.1365-3083.2000.00721.x
  20. Vasiliu A., Martinez L., Gupta R.K., Hamada Y., Ness T., Kay A., Bonnet M., Sester M., Kaufmann S.H.E., Lange C., Mandalakas A.M. // Clin. Microbiol. Infect. 2024. V. 30. P. 1123-1130. https://doi.org/10.1016/j.cmi.2023.10.023
  21. Lange C., Aaby P., Behr M.A., Donald P.R., Kaufmann S.H.E., Netea M.G., Mandalakas A.M. // Lancet Infect. Dis. 2022. V. 22. P. e2–e12. https://doi.org/10.1016/S1473-3099(21)00403-5
  22. Baliko Z., Szereday L., Szekeres-Bartho J. // FEMS Immunol. 1998. Med. Microbiol. V. 22. P. 199–204. https://doi.org/10.1111/j.1574-695X.1998.tb01207.x
  23. Dieli F., Singh M., Spallek R., Romano A., Titone L., Sireci G., Friscia G., Di Sano C., Santini D., Salerno A., Ivanyi J. // Scand. J. Immunol. 2000. V. 52. P. 96–102. https://doi.org/10.1046/j.1365-3083.2000.00744.x
  24. Tamburini B., Badami G.D., Azgomi M.S., Dieli F., La Manna M.P., Caccamo N. // Tuberculosis (Edinb). 2021. V. 130. P. 102–109. https://doi.org/10.1016/j.tube.2021.102109
  25. Shiratsuchi H., Okuda Y., Tsuyuguchi I. // Infect. Immun. 1987. V. 55. P. 2126–2131. https://doi.org/10.1128/iai.55.9.2126-2131
  26. McDyer J.F., Hackley M.N., Walsh T.E., Cook J.L., Seder R.A. // J. Immunol. 1997. V. 158. P. 492–500.
  27. McDyer J.F., Li Z., John S., Yu X., Wu C.Y., Ragheb J.A. // J. Immunol. 2002. V. 169. P. 2736–2746. https://doi.org/10.4049/jimmunol.169.5.2736
  28. Bermudez L.E., Stevens P., Kolonoski P., Wu M., Young L.S. // J. Immunol. 1989. V. 143. P. 2996–3000.
  29. Denis M. // Cell. Immunol. 1991. V. 132. P. 150–157. https://doi.org/10.1016/0008-8749(91)90014-3
  30. Suárez-Méndez R., García-García I., FernándezOlivera N., Valdés-Quintana M., Milanés-Virelles M.T., Carbonell D., Machado-Molina D., ValenzuelaSilva C.M., López-Saura P.A. // BMC Infect. Dis. 2004. V. 4. P. 44. https://doi.org/10.1186/1471-2334-4-44
  31. Giosue S., Casarini M., Ameglio F., Zangrilli P., Palla M., Altieri A.M., Bisetti A. // Eur. Cytokine Netw. 2000. V. 11. P. 99–104.
  32. Kobayashi K., Kasama T. // Nihon Hansenbyo Gakkai Zasshi. 2000. V. 69. P. 77–82. https://doi.org/10.5025/hansen.69.77
  33. Greinert U., Ernst M., Schlaak M., Entzian P. // Eur. Respir. J. 2001. V. 17. P. 1049–1051. https://doi.org/10.1183/09031936.01.17510490
  34. Phyu S., Tadesse A., Mustafa T., Tadesse S., Jonsson R., Bjune G. // Scand. J. Immunol. 2000. V. 51. P. 147–154. https://doi.org/10.1046/j.1365-3083.2000.00662.x
  35. Beltan E., Horgen L., Rastogi N. // Microb. Pathog. 2000. V. 28. P. 313–318. https://doi.org/10.1006/mpat.1999.0345
  36. Ragno S., Romano M., Howell S., Pappin D.J., Jenner P.J., Colston M.J. // Immunol. 2001. V. 104. P. 99–108. https://doi.org/10.1046/j.0019-2805.2001.01274.x
  37. Zolotarev Y.A., Dadayan A.K., Bocharov E.V., Borisov Y.A., Vaskovsky B.V., Dorokhova E.M., Myasoedov N.F. // Amino Acids. 2003. V. 24. P. 325–333. https://doi.org/10.1007/s00726-002-0404-7
  38. Sadovnikov V.B., Navolotskaya E.V. // J. Pept. Sci. 2014. V. 20. P. 212–215. https://doi.org/10.1002/psc.2603
  39. Sadovnikov V.B., Zinchenko D.V., Navolotskaya E.V. // Russ. J. Bioorg. Chem. 2016. V. 42. P. 269–271. https://doi.org/10.1134/S1068162016030122
  40. Dal Farra C., Zsurger N., Vincent J.-P., Cupo A. // Peptides. 2000. V. 21. P. 577–587. https://doi.org/10.1016/s0196-9781(00)00182-0
  41. Lowry O.H., Rosebbrough N.J., Farr O.L., Randal R.J. // J. Biol. Chem. 1951. V. 193. P. 265–275.
  42. Pennock B.E. // Anal. Biochem. 1973. V. 56. P. 306– 309. https://doi.org/10.1016/0003-2697(73)90195-4
  43. Cheng Y.C., Prusoff W. // Biochem. Pharmacol. 1973. V. 22. P. 3099–3108. https://doi.org/10.1016/0006-2952(73)90196-2

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Зависимость общего (1), специфического (2) и неспецифического (3) связывания пептида [3H]LKEKK с мембранами перитонеальных макрофагов (а) и спленоцитов (б) мыши от времени инкубации. Величину специфического связывания меченого пептида определяли как разность между его общим и неспецифическим связыванием.

Скачать (212KB)
3. Рис. 2. Анализ в координатах Скэтчарда специфического связывания пептида [3H]LKEKK с плазматическими мембранами перитонеальных макрофагов (1) и спленоцитов (2) интактных мышей (а) и мышей, инфицированных M. bovis-bovinus 8 (б). B и F – молярные концентрации связанного и свободного меченого пептида [3H]LKEKK соответственно.

Скачать (154KB)

© Российская академия наук, 2025