Теплоемкость и магнитные свойства PrMgAl11O19

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Калориметрическими методами измерена изобарная теплоемкость гексаалюмината магния-празеодима PrMgAl11O19 со структурой магнетоплюмбита в интервале температур 2–1865 K. По согласованным и сглаженным значениям теплоемкости рассчитаны термодинамические функции (энтропия, изменение энтальпии и приведенная энергия Гиббса) в указанном интервале температур. Обнаружена пологая аномалия теплоемкости с максимумом при ~ 8 K, рассчитаны ее энтропия и энтальпия. С помощью метода динамической магнитной восприимчивости исследованы магнитные свойства в диапазоне температур 2–300 K. По результатам измерений магнитных свойств обнаружена аномалия на мнимой компоненте динамической магнитной восприимчивости, температурный диапазон которой согласуется с областью аномалии теплоемкости.

Полный текст

Доступ закрыт

Об авторах

П. Г. Гагарин

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Автор, ответственный за переписку.
Email: gagarin@igic.ras.ru
Россия, Ленинский пр-т, 31, Москва, 119991

А. В. Гуськов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: gagarin@igic.ras.ru
Россия, Ленинский пр-т, 31, Москва, 119991

В. Н. Гуськов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: gagarin@igic.ras.ru
Россия, Ленинский пр-т, 31, Москва, 119991

А. В. Хорошилов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: gagarin@igic.ras.ru
Россия, Ленинский пр-т, 31, Москва, 119991

Н. Н. Ефимов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: gagarin@igic.ras.ru
Россия, Ленинский пр-т, 31, Москва, 119991

К. С. Гавричев

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: gagarin@igic.ras.ru
Россия, Ленинский пр-т, 31, Москва, 119991

Список литературы

  1. Lu H., Wang C.-A., Zhang C. // Ceram. Int. 2014. V. 40. P. 16273. https://doi.org/10.1016/j.ceramint.2014.07.064
  2. Gadow R., Lischka M. // Surf. Coat. Technol. 2002. V. 151–152. P. 392. https://doi.org/10.1016/S0257-8972(01)01642-5
  3. Bansal N.P., Zhu D. 2008. V. 202. P. 2698. https://doi.org/10.1016/j.surfcoat.2007.09.048
  4. Zhang Y., Wang Y., Jarligo M.O. et al. // Opt. Lasers Eng. 2008. V. 46. P. 601. https://doi.org/10.1016/j.optlaseng.2008.04.001
  5. Friedrich C., Gadow R., Schirmer T.J. // Therm. Spray Technol. 2001. V. 10. P. 592. https://doi.org/10.1361/105996301770349105
  6. Liu Z.-G., Ouyang J.-H., Zhou Y. // J. Alloys Compd. 2009. V. 472. P. 319. https://doi.org/10.1016/j.jallcom.2008.04.042
  7. Iyi N., Takekawa S., Kimura S. // J. Solid State Chem. 1989. V. 83. P. 8. https://doi.org/10.1016/0022-4596(89)90048-0
  8. Lee K.N. Protective Coatings for Gas Turbines, The Gas Turbine Handbook, Section 4.4.2, U.S. Department of Energy, NETL, 2006, p. 431.
  9. Wang Y.-H., Ouyang J.-H., Liu Zh.-G. // J. Alloys Compd. 2009. V. 485. P. 734. https://doi.org/10.1016/j.jallcom.2009.06.068
  10. Chen X., Gu L., Zou B. et al. // Surf. Coat. Technol. 2012. V. 206. P. 2265. https://doi.org/10.1016/j.surfcoat.2011.09.076
  11. Cao X.Q., Zhang Y.F., Zhang J.F. et al. // J. Eur. Ceram. Soc. 2008. V. 28. P. 1979. https://doi.org/10.1016/j.jeurceramsoc.2008.01.023
  12. Halvarsson M., Langer V., Vuorinen S. // Surf. Coat. Technol. 1995. V. 76–77. P. 358. https://doi.org/10.1016/0257-8972(95)02558-8
  13. Doležal V., Nádherný L., Rubešová K. et al. // Ceram. Int. 2019. V. 45. P. 11233. https://doi.org/10.1016/j.ceramint.2019.02.162
  14. Lefebvre D., Thery J., Vivien D. // J. Am. Ceram. Soc. 1986. V. 69. P. 289. https://doi.org/10.1111/j.1151-2916.1986.tb07380.x
  15. Kahn A., Lejus A.M., Madsac M. et al. // J. Appl. Phys. 1981. V. 52. P. 6864. https://doi.org/10.1063/1.328680
  16. Lu X., Yuan J., Xu M. et al. // Ceram. Int. 2021. V. 47. P. 28892. https://doi.org/10.1016/j.ceramint.2021.07.050.
  17. Lu H., Wang C.-A., Zhang C., Tong S. // J. Eur. Ceram. Soc. 2015. V. 35. P. 1297. http://dx.doi.org/10.1016/j.jeurceramsoc.2014.10.030
  18. Leitner J., Voňka P., Sedmidubský D., Svoboda P. // Thermochim. Acta. 2010. V. 497. P. 7. https://doi.org/10.1016/j.tca.2009.08.002
  19. Guskov V.N., Tyurin A.V., Guskov A.V. et al. // Ceram. Int. 2020. V. 46. P. 12822. https://doi.org/10.1016/j.ceramint.2020.02.052.
  20. Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2023. Т. 68. № 11. С. 1607.
  21. Рюмин М.А., Никифорова Г.Е., Тюрин А.В. и др. // Неорган. материалы. 2020. Т. 56. № 1. С. 102. https://doi.org/10.31857/S0002337X20010145
  22. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 16. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
  23. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
  24. Prohaska T., Irrgeher J., Benefield J. et al. // Pure Appl. Chem. 2022. V. 94. P. 573. https://doi.org/10.1515/pac-2019-0603
  25. Colwelland J.H., Magnum B.W. // J. Appl. Phys. 1967. V. 38. P. 1468.
  26. Zhou H.D., Wiebe C.R., Janik J.A. et al. // Phys. Rev. Lett. 2008. V. 101. P. 227204. https://doi.org/10.1103/PhysRevLett.101.227204
  27. Greedan J.E. // J. Alloys Compd. 2006. V. 408–412. P. 444. https://doi.org/10.1016/j.jallcom.2004.12.084
  28. Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2024. Т. 69. № 6. (в печати)
  29. Тюрин А.В., Хорошилов А.В., Рюмин М.А. и др. // Журн. неорган. химии. 2020. Т. 65. № 12. С. 1668. al.
  30. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
  31. Gruber G.B., Justice B.H., Westrum E.F., Zandi B. // J. Chem. Thermodyn. 2002. V. 34. P. 457. https://doi.org/ 10.1006/jcht.2001.0860
  32. Chase M.W. Jr. NIST-JANAF Thermochemical Tables. Am. Chem. Soc., 1998.
  33. Barin I. Thermochemical Data of Pure Substances. Weinheim: VCH, 1995.
  34. Ditmars D.A., Ishihara S., Chang S.S. et al. // J. Res. Natl. Bur. Stand. 1982. V. 87. P. 159.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Приложение
Скачать (948KB)
3. Рис. 1. Температурная зависимость теплоемкости PrMgAl11O19.

Скачать (122KB)
4. Рис. 2. Теплоемкость в области низкотемпературной аномалии: 1 – теплоемкость PrMgAl11O19, 2 – теплоемкость LaMgAl11O19 [27], штриховая линия – (Ср(LaMgAl11O19) + СSch (50 см–1).

Скачать (84KB)
5. Рис. 3. Разность теплоемкостей PrMgAl11O19, определенных в настоящей работе и рассчитанных по правилу Неймана–Коппа: 1 – по соотношению (5) (∆), 2 – по соотношению (6) (○). Штриховая линия 3 соответствует разности в 2.5%.

Скачать (77KB)
6. Рис. 4. Температурные зависимости действительной (χʹ, пустые символы) и мнимой (χʺ, заполненные символы) частей динамической магнитной восприимчивости образца PrMgAl11O19 в нулевом магнитном поле при различных частотах. Амплитуда переменного магнитного поля 1 Э.

Скачать (121KB)
7. Рис. 5. Температурные зависимости мнимой компоненты динамической магнитной восприимчивости образца PrMgAl11O19 в магнитном поле 1000 Э при различных частотах. Амплитуда переменного магнитного поля 1 Э.

Скачать (106KB)

© Российская академия наук, 2024