Current Spreading in Thin Foils or Flat Current Sheets

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

To consider the evolution of current distribution in inhomogeneous thin conductive layers or foils, we apply an integrodifferential equation, which reduces the three-dimensional problem for the magnetic field to a two-dimensional problem, and, for the current distribution across the width of inhomogeneous conductive sheets or foils, this equation reduces the two-dimensional problem for the magnetic field to a one-dimensional problem. For homogeneous conductive layers with constant conductivity, the spatial scale of current distribution, initially concentrated in a limited area, increases proportionally to time at a rate of u = c2/4πσΔ, where σ is the conductivity of the layer material and Δ is its thickness. As an application to the problems of current transfer through electroexplosive opening switches, a current distribution across the width of a foil is considered for a periodic serpentine-type system of flat foils. It is shown that initially a current distribution corresponding to the perfect conductivity of foils is established in this system. Then, in a time on the order of s/u (2s is the width of a foil), the current distribution in the foil relaxes to a uniform distribution. Estimates show that if the foils are used as opening switches, then currents through the foils during the current transfer to the load are expected to have time to get uniformly distributed across their width; therefore, corrections for the nonuniformity of the current distribution in the switches should be small.

作者简介

S. Garanin

All-Russian Research Institute of Experimental Physics

Email: emkravets@vniief.ru
607188, Sarov, Nizhny Novgorod oblast, Russia

E. Kravets

All-Russian Research Institute of Experimental Physics

编辑信件的主要联系方式.
Email: emkravets@vniief.ru
607188, Sarov, Nizhny Novgorod oblast, Russia

参考

  1. В. А. Бурцев, Н. В. Калинин, А. В. Лучинский, Электрический взрыв проводников и его применение в электрофизических установках, Энергоиздат, Москва (1990).
  2. A. M. Buyko, J. Appl. Mech. Tech. Phys. 56, 114 (2015).
  3. А. А. Базанов, Е. И. Бочков, С. Г. Гаранин и др., ДАН 489, 355 (2018).
  4. S. F. Garanin and S. D. Kuznetsov, J. Appl. Phys. 123, 133301 (2018).
  5. Е. Б. Татаринова, К. В. Чукбар, ЖЭТФ 92, 809 (1987).
  6. М. И. Дьяконов, А. С. Фурман, ЖЭТФ 92, 1012 (1987).
  7. В. В. Смирнов, К. В.Чукбар, Физика плазмы 25, 610 (1999).
  8. К. В. Чукбар, Лекции по явлениям переноса в плазме, ИД <Интеллект>, Долгопрудный (2008).
  9. S. F. Garanin, E. M. Kravets, and V. Yu. Dolinskiy, IEEE Trans. Plasma Sci. 48, 4279 (2020).
  10. С. Ф. Гаранин, С. Д. Кузнецов, УФН 190, 1109 (2020).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023