ПОВЕДЕНИЕ СМЕСЕЙ АКТИВНЫХ И ПАССИВНЫХ НЕМАТИКОВ В ОГРАНИЧЕННОЙ ДВУМЕРНОЙ КРУГЛОЙ ОБЛАСТИ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

С помощью простой молекулярной модели пассивных, активных нехиральных и хиральных нематиков проведено моделирование методами молекулярной динамики поведения их бинарных смесей в двумерной ограниченной области, имеющей форму круга. Изучены равновесные структуры в этих системах при нормальном и тангенциальном сцеплении частиц на границах. Показано, что в смесях, состоящих из пассивных и активных модельных частиц, а также в смесях активных частиц с различной хиральностью при достаточно больших самодвижущих силах содержащая их ограниченная область разбивается на кластеры, преимущественно состоящие из частиц одного вида. Для характеристики степени разделения смесей на эти кластеры вводится параметр их сегрегации. Вычисляются значения этого параметра при различных величинах самодвижущих сил и хиральности модельных частиц.

Об авторах

Л. В. Миранцев

Институт проблем машиноведения Российской академии наук (ИПМАШ РАН)

Email: mlv@ipme.ru
Санкт-Петербург, Россия

Список литературы

  1. C. Bechinger, R. Di Leonardo, H. Lowen, C. Reichhardt, and G. Volpe, Rev. Mod. Phys. 88, 045006 (2016).
  2. A. Doostmohammadi, J. Ignes-Mullo, J. Yeomans, and F. Sagues, Nat. Commun. 9, 3246 (2018).
  3. M. Norton, A. Baskaran, A. Opathalage, B. Langeslay, S. Fraden, A. Baskaran, and F. Hagan, Phys. Rev. E 97, 012702 (2018).
  4. A. Maitra and M. Lenz, Nat. Commun. 10, 920 (2019).
  5. M. Norton, P. Grover, M. Hagan, and S. Fraden, Phys. Rev. Lett. 125, 178005 (2020).
  6. H. Wioland, F. G. Woodhouse, J. Dunkel, J. O. Kessler, and R. E. Goldstein, Phys. Rev. Lett. 110, 268102 (2013).
  7. H. Wioland, E. Lushi, and R. E. Goldstein, New J. Phys. 18, 075002 (2016).
  8. M. Ravnik and J. M. Yeomans, Phys. Rev. Lett. 110, 026001 (2013).
  9. A. Doostmohammadi and J. M. Yeomans, Eur. Phys. J. Spec. Top. 227, 2401 (2019).
  10. S. Rana, M. Samsuzzaman, and A. Saha, Soft Matter 15, 8865 (2019).
  11. S. Das and R. Chelakkot, Soft Matter 16, 7250 (2020).
  12. S. Das, S. Ghosh, and R. Chelakkot, Phys. Rev. E 102, 032619 (2020).
  13. S. Das, A. Garg, A. I. Campbell, J. Howse, A. Sen, D. Velegol, R. Golestanian, and S. J. Ebbens, Nat. Commun. 6, 8999 (2015).
  14. T. Ostapenko, F. J. Schwarzendahl, T. J. Boddeker, C. T. Kreis, J. M. Cammann, G. Mazza, and O. Baumchen, Phys. Rev. Lett. 120, 068002 (2018).
  15. M. Popescu, S. Dietrich, and G. Oshanin, J. Chem. Phys. 130, 94702 (2009).
  16. X. Yang, M. L. Manning, and M. C. Marchetti, Soft Matter 10, 6477 (2014).
  17. L. V. Mirantsev, Eur. Phys. J. E 44, 112 (2021).
  18. E. J. L. de Oliveira, L. V. Mirantsev, M. L. Lyra, and I. N. de Oliveira, J. Mol. Liq. 377, 121513 (2023).
  19. A. K. Abramyan, N. M. Bessonov, L. V. Mirantsev, and N. A. Reinberg, Phys. Lett. A 379, 1274 (2015).
  20. A. K. Abramyan, N. M. Bessonov, L. V. Mirantsev, and A. A. Chevrychkina, Eur. Phys. J. B 91 48 (2018).
  21. L. V. Mirantsev, Phys. Rev. E 100, 023106 (2019).
  22. M. P. Allen and J. Tildesly, Computer Simmulations of Liquids, Clarendon Press, Oxford (1989).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024