Crystallographic classification of special intercrystalline boundaries

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

A classification of special intercrystalline boundaries in centrosymmetric crystals of all syngonies is constructed based on the symmetric properties of planar lattices. It is shown that the set of orientation parameters identifying special boundaries is determined by the orientation of the plane formed by the matching atoms of the contacting crystals. Unlike the general type of boundaries, the number of these parameters is either two or three. It is shown that the lattice of matching bicrystal nodes appears only in crystals with high-order axes of symmetry. Possible misorientations of the contacting crystals are found depending on the symmetry of the crystallographic plane for different crystallographic conditions.

全文:

受限制的访问

作者简介

B. Darinskiy

Voronezh State University

编辑信件的主要联系方式.
Email: darinskii@mail.ru
俄罗斯联邦, Voronezh

A. Prizhimov

Voronezh State University

Email: darinskii@mail.ru
俄罗斯联邦, Voronezh

参考

  1. Watanabe T. // J. Mater. Sci. 2011. V. 46. P. 4095. https://doi.org/10.1007/s10853-011-5393-z
  2. Kobayashi S., Hirata M., Tsurekawa S., Watanabe T. // Procedia Engineering. 2011. V. 10. P. 112. https://doi.org/ 10.2320/matertrans.MB201804
  3. Randle V. // Scr. Mater. 2006. V. 54. P. 1011. https://doi.org/10.1016/j.scriptamat.2005.11.050
  4. Geng X., Vega-Paredes M., Wang Z. // Nat. Commun. 2024. V. 15. P. 8534. https://doi.org/10.1038/s41467-024-52919-w
  5. Zelinsky J.A. // Massachusetts Institute of Technology. 2005. P. 74.
  6. De Souza R.A., Munir Z.A., Kim S., Martin M. // Solid State Ion. 2011. V. 196. P. 1. https://doi.org/10.1016/j.ssi.2011.07.001
  7. Nyman B.J., Helgee E.E., Wahnström G. // Appl. Phys. Lett. 2012. V. 100. P. 061903. https://doi.org/10.1063/1.3681169
  8. Aus M.J., Szpunar B., Erb U. // MRS Online Proceedings Library. 1993. V. 318. P. 39. https://doi.org/10.1557/PROC-318-39
  9. Radle V., Coleman M. // Acta Mater. 2009. V. 57. P. 3410. https://doi.org/10.1016/j.actamat.2009.04.002
  10. Kogtenkova O., Straumal B., Korneva A. et al. // Metals. 2019. V. 9. P. 10. https://doi.org/10.3390/met9010010
  11. Cantwell P.R., Frolov T., Rupert T.J. et al. // Annu. Rev. Mater. Res. 2020. V. 50. P. 465. https://doi.org/10.1146/annurev-matsci-081619-114055
  12. Adams T.B., Sinclair D.C., West A.R. // Phys. Rev. B. 2006. V. 73. P. 094124. https://doi.org/10.1103/PhysRevB.73.094124
  13. Cao G., Shen J., Ng D. et al. // Light Sci. Appl. 2021. V. 10. P. 1. https://doi.org/10.1038/s41377-021-00515-8
  14. Kim H.W. // Appl. Microsc. 2023. V. 53. P. 5. https://doi.org/10.1186/s42649-023-00088-3
  15. Bollmann W. Crystal Defects and Crystalline Interfaces. Berlin: Springer, 1970
  16. Grimmer H. // Acta Cryst. A. 1974. V. 30. P. 680. https://doi.org/10.1107/S056773947400163X
  17. Singh A., Chandrasekhar N., King A.H. // Acta Cryst. B. 1990. V. 46. P. 117. https://doi.org/10.1107/S0108768189011006
  18. Grimmer H. // Acta Cryst. A. 1989. V. 45. P. 505. https://doi.org/10.1107/S0108767389002291
  19. Grimmer H., Warrington D.H. // Acta Cryst. A. 1987. V. 43. P. 232. https://doi.org/10.1107/S0108767389002291
  20. Глейтер Г., Чалмерс Б. Большеугловые границы зерен. М.: Мир, 1975. 376 с.
  21. Орлов А.Н., Перевезенцев В.Н., Рыбин В.В. Границы зерен в металлах. М.: Металлургия, 1980. 224 с.
  22. Straumal B.B., Shvindlerman L.S. // Acta Metall. 1985 V. 33. P. 1735. https://doi.org/10.1016/0001-6160(85)90168-3
  23. Wolf D. // Handbook of Materials Modeling. Dordrecht: Springer, 2005. P. 1953. https://doi.org/10.1007/978-1-4020-3286-8_102
  24. Polfus J.M., Toyoura K., Oba F. et al. // Phys. Chem. Chem. Phys. 2012. V. 14. P. 12339. https://doi.org/10.1039/C2CP41101F
  25. Fortes M.A. // Phys. Status Solidi. B. 1977. V. 82. P. 377. https://doi.org/10.1002/pssb.2220820143
  26. Mishin Y., Asta M., Li Ju // Acta Mater. 2010. V. 58. P. 1117. https://doi.org/10.1016/j.actamat.2009.10.049
  27. Bonnet R., Durand F. // Scr. Metall. 1975. V. 9. P. 935. https://doi.org/10.1016/0036-9748(75)90548-7
  28. Даринский Б.М., Ефанова Н.Д., Прижимов А.С. // Конденсированные среды и межфазные границы. 2019. Т. 21. № 4. С. 490. https://doi.org/10.17308/kcmf.2019.21/2361
  29. Darinskiy B.M., Efanova N.D., Saikо D.S. // Ferroelectrics. 2020. V. 567. P. 13. https://doi.org/10.1080/00150193.2020.1791582

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025