Study of the influence of ultraviolet irradiation on the properties of CO catalyst based on titanium dioxide, plasma-chemical titanium carbonitride and palladium

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A CO catalyst based on TiO2 was synthesized with additions of 10 wt % TiC0.2N0.8 and 10 wt % Pd. The catalyst was tested by TEM, X-ray photoelectron spectroscopyand X-ray patterns. The effect of UV radiation on catalytic properties was investigated and long-term tests were carried out for 100 days. UV radiation was found to increase the rate of the CO oxidation reaction, decrease the activation energy of the reaction rate constant, and increase the long-term stability of the catalytic properties. The activation energy of the reaction rate constant is determined in the temperature range from 288 to 308 K, which is equal to 23 ± 1 kJ/mol under UV illumination of the catalyst. The catalyst has good prospects for use in photocatalytic air cleaners.

Sobre autores

N. Vershinin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS

Autor responsável pela correspondência
Email: vernik@icp.ac.ru
Rússia, Chernogolovka

I. Balikhin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS; Osipyan Institute of Solid State Physics of the RAS

Email: vernik@icp.ac.ru
Rússia, Chernogolovka; Chernogolovka

E. Kabachkov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS; Osipyan Institute of Solid State Physics of the RAS

Email: vernik@icp.ac.ru
Rússia, Chernogolovka; Chernogolovka

E. Kurkin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS; Osipyan Institute of Solid State Physics of the RAS

Email: vernik@icp.ac.ru
Rússia, Chernogolovka; Chernogolovka

Bibliografia

  1. Mo J. et al. // Atmospheric Environment. 2009. V. 43. № 14. P. 2229.
  2. Paz Y. // Appl. Catal. B: Environmental. 2010. V. 99. № 3−4. P. 448.
  3. Kolarik B. et al. // Building Environment. 2010. V. 45. №. 6. P. 1434.
  4. Vershinin N.N. et al. // Fullerenes, Nanotubes and Carbon Nanostructures. 2011. V. 19. № 63.
  5. Вершинин Н.Н. и др. // Известия Академии наук. Серия химическая. 2017. Т. 4. С. 648.
  6. Вершинин Н.Н. и др. // Химия высоких энергий. 2018. Т. 52. С. 78.
  7. Вершинин Н.Н. и др. // Химия высоких энергий. 2019. Т. 53. С. 400.
  8. Вершинин Н.Н. и др. // Химия высоких энергий. 2021. Т. 55. С. 76.
  9. Козлова Е.А. и др. // Успехи химии. 2021. Т. 90. № 12. С. 1520.
  10. Khan H., Shah M.U.H. // J. Environ. Chem. Eng. 2023. C. 111532.
  11. Sangman Hwang et al. // Appl. Catalysis B: Environ. 2003. V. 46. № 49.
  12. Kumar S. et al. // J. Eur. Ceramic Soc. 2019. V. 39. № 9. P. 2915.
  13. Savinkina E.V. et al. // Cryst. Eng. Comm. 2015. V. 17. № 37. P. 7113.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025