Influence of solar activity variations on interdiurnal variability of NmE obtained from ground-based low latitude ionosonde data in geomagnetically quiet conditions
- 作者: Pavlov A.V.1, Pavlovа N.M.1
-
隶属关系:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN)
- 期: 卷 65, 编号 4 (2025)
- 页面: 467-481
- 栏目: Articles
- URL: https://bioethicsjournal.ru/0016-7940/article/view/688297
- DOI: https://doi.org/10.31857/S0016794025040065
- EDN: https://elibrary.ru/EXQKAM
- ID: 688297
如何引用文章
详细
The study of the interdiurnal variations in the statistical characteristics of the electron number density NmE of the ionospheric E layer peak for each month M of the year in geomagnetically quiet conditions at low and moderate solar activity was carried out based on hourly measurements of the critical frequency of the E layer of the Huancayo and Jicamarca ionosondes from 1957 to 1989 and 1998–2006, respectively. The authors have calculated the mathematical expectation NmEE(UT,M), NmEA(UT,M) arithmetic mean, the standard deviation σE(UT,M) and the variation coefficient CVE(UT,M) of NmE(UT,M) from NmEE(UT,M), respectively, where UT is the universal time. The calculations showed that the value of CVE(UT,M) that determines the relative interdiurnal NmE variability vary between 4–14 and 3–18% at low and moderate solar activity, respectively. It was found for the first time that the interdiurnal variability of NmE can either increase or decrease when solar activity changes from low to moderate levels. In the first case, the increase in σE(UT,M) prevails over the growth of NmEE(UT,M), in the second case, the growth of NmEE(UT,M) prevails over the increase in σE(UT,M).
全文:

作者简介
A. Pavlov
Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN)
编辑信件的主要联系方式.
Email: pavlov@izmiran.ru
俄罗斯联邦, Moscow, Troitsk
N. Pavlovа
Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN)
Email: pavlov@izmiran.ru
俄罗斯联邦, Moscow, Troitsk
参考
- Акасофу С.-И., Чепмен С. Солнечно-земная физика. Часть 2. М.: Мир, 510 с. 1972.
- Антонова Л.А., Иванов-Холодный Г.С., Чертопруд В.Е. Аэрономия слоя Е (учет вариаций УФ-излучения Солнца и геомагнитных возмущений). М.: Янус, 196 c. 1996.
- Балдин К.В., Башлыков В.Н., Рукосуев А.В. Основы теории вероятностей и математической статистики. М.: ФЛИНТА, 489 с. 2016.
- Беккер С.А. Вероятностно-статистические модели нижней невозмущенной среднеширотной ионосферы, верифицированные по данным наземных радиофизических измерений. Автореф. дисс. … канд. физ.-мат. наук. М.: изд-во ИДГ РАН, 26 с. 2018.
- Брюнелли Б.Е., Намгаладзе А.А. Физика ионосферы. М.: Наука, 527 с. 1988.
- Дэйвид Г. Порядковые статистики. М.: Наука, 336 с. 1979.
- Дэвис К. Радиоволны в ионосфере. М.: Мир, 502 с. 1973.
- Зайдель A.H. Ошибки измерений физических величин. СПб.: Лань, 112 с. 2022.
- Козлов С.И., Ляхов А.Н., Беккер С.З. Основные принципы построения вероятностно-статистических моделей ионосферы для решения задач распространения радиоволн // Геомагнетизм и аэрономия. Т. 54. № 6. С. 767–779. 2014. https://doi.org/10.7868/S0016794014060121
- Кобзарь А.И. Прикладная математическая статистика. Для инженеров и научных работников. М.: Физматлит, 816 с. 2006.
- Павлов А.В., Павлова Н.М. Влияние рефракции солнечного излучения на зенитный угол и времена восхода и захода Солнца в атмосфере // Геомагнетизм и аэрономия. Т. 50. № 2. С. 228–233. 2010.
- Павлов А.В., Павлова Н.М. Сравнение измеренных ионозондом Москвы и вычисленных концентраций электронов максимума слоя E ионосферы в весенних условиях // Геомагнетизм и аэрономия. Т. 55. № 2. С. 247–257. 2015. https://doi.org/10.7868/S0016794015020145
- Павлов А.В., Павлова Н.М. Зависимости от месяца года статистических характеристик NmE средних и низких широт в дневных геомагнито-спокойных условиях при низкой солнечной активности // Геомагнетизм и аэрономия. Т. 56. № 4. С. 431–436. 2016. https://doi.org/10.7868/S0016794016040167
- Пиггот В.П., Равер К. Руководство URSI по интерпретации и обработке ионограмм. М.: Наука, 342 с. 1978.
- Тэйлор Дж. Введение в теорию ошибок. М.: Мир, 272 с. 1985.
- Cander L.R. Ionospheric variability / Ionospheric Space Weather. / Ed. L.R. Cander. Cham, Switzerland: Springer. P. 59–93. 2019. https://doi.org/10.1007/978-3-319-99331-7_4
- David H.A. Order Statistics. NY and London: John Wiley & Sons, 272 p. 1970.
- Durivage M.A. Practical Engineering, Process, and Reliability Statistics. Milwaukee, WI: ASQ Quality Press, 356 p. 2022.
- Gatti P.L. Probability Theory and Mathematical Statistics for Engineers. London and NY: Spon Press of Taylor & Francis Group, 369 p. 2005. https://doi.org/10.1201/9781482267761
- Hunt S.M., Close S., Coster A.J., Stevens E., Schuett L.M., Vardaro A. Equatorial atmospheric and ionospheric modeling at Kwajalein missile range // Lincoln Laboratory Journal. V. 12. № 1. P. 45–64. 2000.
- Hedin A.E. MSIS-86 thermospheric model // J. Geophys. Res. – Space. V. 92. № 5. P. 4649 –4662. 1987. https://doi.org/10.1029/JA092iA05p04649
- Howell D.C. Statistical Methods for Psychology. Belmont, CA: Wadsworth Cengage Learning, 792 p. 2013.
- Keneshea T.J., Narcisi R.S., Swider W. Diurnal model of the E region // J. Geophys. Res. V. 75. N 2. P. 845 – 854. 1970. https://doi.org/10.1029/JA075i004p00845
- Liu H., Yamazaki J., Lei J. Day-to-day variability of the thermosphere and ionosphere / Upper Atmosphere Dynamics and Energetics / Space Physics and Aeronomy Collection, Geophysical Monograph Series 261. V. 4. / Eds. W. Wang, Y. Zhang, L.J. Paxton. Hoboken, NY: Wiley. P. 275–300. 2021. https://doi.org/10.1002/9781119815631.ch15
- Mendillo M. Day-to-day variability of the ionosphere / The Dynamical Ionosphere: A Systems Approach to Ionospheric Irregularity. / Eds. M. Materassi, B. Forte, A.J. Coster, S. Skone. Amsterdam: Elsevier. P. 7–11. 2020. https://doi.org/10.1016/B978-0-12-814782-5.00002-9
- Moore L., Mendillo M., Martinis C., Bailey S. Day-to-day variability of the E layer // J. Geophys. Res. – Space. V. 111. № 6. ID A06307. 2006. https://doi.org/10.1029/2005JA011448
- Nicolls M.J., Rodrigues F.S., Bust G.S. Global observations of E region plasma density morphology and variability // J. Geophys. Res. – Space. V. 117. № 1. ID A01305. 2012. https://doi.org/10.1029/2011JA017069
- Pavlov A.V. Ion chemistry of the ionosphere at E- and F-region altitudes: A review // Surv. Geophys. V. 33. № 5. P. 1133–1172. 2012. https://doi.org/10.1007/s10712-012-9189-8
- Pavlov A.V., Pavlova N.M. Comparison of NmE measured by the Boulder ionosonde with model predictions near the spring equinox // J. Atmos. Sol.-Terr. Phy. V. 102. P. 39–47. 2013. https://doi.org/10.1016/j.jastp.2013.05.006
- Pavlov A.V., Pavlova N.M. Influence of solar activity variations on interdiurnal variability of NmE in geomagnetically quiet conditions obtained from ground-based Dourbes // Geomagn. Aeronomy. V. 64. № 3. P. 376–390. 2024a. https://doi.org/10.1134/S0016793224600139
- Pavlov A.V., Pavlova N.M. Impact of the solar activity variations on the low-latitude day-to-day variability of NmF2 during geomagnetically quiet conditions obtained from the Huancayo and Jicamarca ionosonde observations // Pure Appl. Geophys. V. 181. № 7. P. 2177–2195. 2024b. https://doi.org/10.1007/s00024-024-03503-2
- Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues // J. Geophys. Res. – Space. V. 107. № 12. ID 1468. 2002. https://doi.org/10.1029/2002JA009430
- Richards P.G., Fennelly J.A., Torr D.G. EUVAC: A solar EUV flux model for aeronomic calculations // J. Geophys. Res. – Space. V. 99. № 5. P. 8981–8992. 1994. https://doi.org/10.1029/94JA00518
- Ross S.M. Introduction to Probability and Statistics for Engineers and Scientists. Amsterdam: Elsevier Academic Press, 624 p. 2004.
- Sojka J.J., Jensen J.B., David M., Schunk R.W., Woods T., Eparvier F., Sulzer M.P., Gonzalez S.A., Eccles J.V. Ionospheric model‐observation comparisons: E layer at Arecibo Incorporation of SDO‐EVE solar irradiances // J. Geophys. Res. – Space. V. 119. № 5. P. 3844−3856. 2014. https://doi.org/10.1002/2013JA019528
- Takayanagi K., Itikawa Y. Elementary processes involving electrons in the ionosphere // Space Sci. Rev. V. 11. № 23. P. 380−450. 1970. https://doi.org/10.1007/BF00241527
- Titheridge J.E. Production of the low-latitude night E layer // J. Geophys. Res. – Space. V. 106. № 7. P. 12781–12786. 2001. https://doi.org/10.1029/2000JA900145
- Titheridge J.E. Ionisation below the night F2 layer – A global model // J. Atmos. Sol.-Terr. Phy. V. 65. № 9. P. 1035–1052. 2003. https://doi.org/10.1016/S1364-6826(03)00136-6
- Titterington D.M., Smith A.F.M., Makov U.E. Statistical Analysis of Finite Mixture Distributions. Chichester, UK: John Wiley & Sons, 258 p. 1985.
- Verma J.P., Verma P. Determining Sample Size and Power in Research Studies. Singapore: Springer, 127 p. 2020.
- Yonezawa T. A consideration of the effective recombination coefficient in the E-region of the ionosphere // J. Atmos. Terr. Phys. V. 30. № 10. P. 473–478. 1968. https://doi.org/10.1016/0021-9169(68)90120-7
补充文件
