Influence of space weather conditions on the intermittency of the Pi3 irregular geomagnetic pulsations

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The influence of substorms intensity, solar wind and interplanetary magnetic field (IMF) parameters on the pattern of amplitude distributions (intermittency) of Pi3 pulsation bursts observed in the night sector of the magnetosphere during substorms development was studied. One-minute digital magnetic field observation data from Arctic and Antarctic observatories were used for the analysis (Heiss Island and Mirny). The index α, which reflects the slope of the cumulative distribution function of the Pi3 burst amplitudes, was considered as the main characteristic of the Pi3 pulsation intermittency. It was shown that the distributions of Pi3 burst amplitudes, depending on space weather conditions, obeyed different power laws. It was found that the α value in the northern and southern hemispheres was greater during the development of weak substorms than during the development of strong and moderate substorms. It was shown that the α values in the two hemispheres were comparable when Pi3 bursts were excited against the background of slow solar wind flows, at the northward direction of the IMF Bz component and at a high level of solar wind plasma turbulence. Under other analyzed conditions, an asymmetry in the change in the α index was found. It is assumed that the intermittency index α qualitatively characterizes the level of plasma turbulence in the region of excitation of Pi3 pulsation bursts.

全文:

受限制的访问

作者简介

N. Kurazhkovskaya

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: knady@borok.yar.ru

Borok Geophysical Observatory

俄罗斯联邦, Borok, Yaroslavl oblast

B. Klain

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: klain@borok.yar.ru

Borok Geophysical Observatory

俄罗斯联邦, Borok, Yaroslavl oblast

А. Kurazhkovskii

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: ksasha@borok.yar.ru

Borok Geophysical Observatory

俄罗斯联邦, Borok, Yaroslavl oblast

参考

  1. Будаев В.П., Савин С.П., Зеленый Л.М. Наблюдение перемежаемости и обобщенного самоподобия в турбулентных пограничных слоях лабораторной и магнитосферной плазмы: на пути к определению количественных характеристик переноса // УФН. Т. 18. № 9. С. 905–952. 2011. https://doi.org/10.3367/UFNr.0181.201109a.0905
  2. Воробьев В.Г., Ягодкина О.И., Антонова Е.Е., Зверев В.Л. Влияние параметров плазмы солнечного ветра на интенсивность изолированных магнитосферных суббурь // Геомагнетизм и аэрономия. Т. 58. № 3. С. 311–323. 2018. https://doi.org/10.7868/S001679401803001X
  3. Дэспирак И.В., Любчич А.А., Клейменова Н.Г. Разные типы потоков солнечного ветра и суббури в высоких широтах // Геомагнетизм и аэрономия. Т. 59. № 1. С. 3–9. 2019. https://doi.org/10.1134/S001679401901005X
  4. Ермолаев Ю.И., Николаева Н.С., Лодкина И.Г., Ермолаев М.Ю. Каталог крупномасштабных явлений солнечного ветра для периода 1976-2000 гг. // Космич. исслед. Т. 47. № 2. С. 99–113. 2009.
  5. Захаров В.Е., Пушкарев А.Н., Швец В.Ф., Яньков В.В. О солитонной турбулентности // Письма в ЖЭТФ. Т. 48. Вып. 2. С. 79–82. 1988.
  6. Клайн Б.И., Куражковская Н.А., Куражковский А.Ю. Перемежаемость в волновых процессах // Физика Земли. № 10. С. 25–34. 2008.
  7. Клейменова Н.Г., Козырева О.В., Биттерли Ж., Биттерли М. Длиннопериодные (T=8‒10 мин) геомагнитные пульсации в высоких широтах // Геомагнетизм и аэрономия. Т. 38. № 4. С. 38‒48. 1998.
  8. Клейменова Н.Г., Антонова Е.Е., Козырева О.В., Малышева Л.М., Корнилова Т.А., Корнилов И.А. Волновая структура магнитных суббурь в полярных широтах // Геомагнетизм и аэрономия. Т. 52. № 6. С. 785–793. 2012.
  9. Козырева О.В., Мягкова И.Н., Антонова Е.Е., Клейменова Н.Г. Высыпания энергичных электронов и геомагнитные пульсации Pi3 в полярных широтах // Геомагнетизм и аэрономия. Т. 49. № 6. С. 777‒785. 2009.
  10. Куражковская Н.А., Клайн Б.И. Влияние геомагнитной активности, параметров солнечного ветра и межпланетного магнитного поля (ММП) на закономерности перемежаемости геомагнитных пульсаций Pi2 // Солнечно-земная физика. Т. 1. № 3. С. 11–20. 2015. https://doi.org/10.12737/11551
  11. Куражковская Н.А., Клайн Б.И. Поляризационные характеристики высокоширотных геомагнитных пульсаций Pi3 // Геомагнетизм и аэрономия. Т. 61. № 2. С. 195–210. 2021. https://doi.org/10.31857/S0016794021010107
  12. Левашов Н.Н., Попов В.Ю., Малова Х.В., Зеленый Л.М. Моделирование турбулентности с перемежаемостью в космической плазме // Космич. исслед. Т. 60. № 1. С. 11–16. 2022. https://doi.org/10.31857/S0023420622010083
  13. Малинецкий Г.Г., Потапов А.Б. Современные проблемы нелинейной динамики. М.: Эдиториал УРСС, 335с. 2000.
  14. Моисеев А.В., Стародубцев С.А., Мишин В.В. Особенности возбуждения и распространения по азимуту и меридиану длиннопериодных Pi3 колебаний геомагнитного поля 8 декабря 2017 г. // Солнечно-земная физика. Т. 6. № 3. С. 56–72. 2020. https://doi.org/10.12737/szf-63202007
  15. Пудовкин М.И., Распопов О.М., Клейменова Н.Г. Возмущения электромагнитного поля Земли. Часть II. Короткопериодические колебания геомагнитного поля. Л.: Изд-во ЛГУ, 271 с. 1976.
  16. Akasofu S.I. Roles of north-south component of interplanetary magnetic-field on large-scale auroral dynamics observed by DMSP satellite // Planetary and Space Science. V. 23. № 10. P. 1349–1354. 1975. https://doi.org/10.1016/0032-0633(75)90030-6
  17. Bartucelli M., Constantin P., Doering C.R., Gibbon J.D., Gisselfält M. On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation // Physica D. V. 44. P. 421–444. 1990. https://doi.org/10.1016/0167-2789(90)90156-J
  18. Consolini G., De Michelis P. Fractal time statistics of AE index burst waiting times: evidence of metastability // Nonlinear Processes in Geophysics. V. 9. P. 419–423. 2002. https://doi.org/10.5194/npg-9-419-2002
  19. Dobias P., Wanliss J.A. Intermittency of storms and substorms: is it related to the critical behaviour? // Ann. Geophys. V. 27. P. 2001–2018. 2009. https://doi.org/10.5194/angeo-27-2011-2009
  20. Fu H., Yue C., Zong Q.-G., Zhou X.-Z., Fu S. Statistical characteristics of substorms with different intensity // J. Geophys. Res.: Space Physics. V. 126, e2021JA029318. 2021. https://doi.org/10.1029/2021JA029318
  21. Han D.-S., Yang H.-G., Chen Z.-T., Araki T., Dunlop M.W., Nosé M., Iyemori T., Li Q., Gao Y.-F., Yumoto K. Coupling of perturbations in the solar wind density to global Pi3 pulsations: A case study // J. Geophys. Res. V. 112. A05217. 2007. https://doi.org/10.1029/2006JA011675
  22. Hsu T.-S., McPherron R.L. A statistical study of the relation of Pi2 and plasma flows in the tail // J. Geophys. Res. V. 112. A05209. 2007. https://doi.org/10.1029/2006JA011782
  23. Kubyshkina M., Semenov V., Erkaev N., Gordeev E., Dubyagin S., Ganushkina N., Shukhtina M. Relations between vz and Bx components in solar wind and their effect on substorm onset // GRL. V. 45. 2018. https://doi.org/10.1002/2017GL076268
  24. Martines-Bedenko V.A., Pilipenko V.A., Hartinger M., Partamies N. Conjugate properties of Pi3/Ps6 pulsations according to Antarctica-Greenland observations // Russian Journal of Earth Sciences. V. 22. ES4006. 2022. https://doi.org/10.2205/2022ES000805
  25. Matsuoka H., Takahashi K., Yumoto K., Anderson B.J., Sibeck D.G. Observation and modeling of compressional Pi3 magnetic pulsations // J. Geophys. Res. V. 100. № A7. P. 12103–12115. 1995. https://doi.org/10.1029/94JA03368
  26. Nagano H., Suzuki A., Kim J. S. Pi3 magnetic pulsations associated with substorms // Space Sci. V. 29. №. 5. P. 529‒553. 1981. https://doi.org/10.1016/0032-0633(81)90067-2
  27. Newell P.T., Gjerloev J.W., and Mitchell E.J. Space climate implications from substorm frequency // J. Geophys. Res. Space Physics. V. 118. P. 6254–6265. 2013. https://doi.org/10.1002/jgra.50597
  28. Newell P.T., Liou K., Gjeroev J.W., Sotirelis T., Wing S., Mitchell E.J. Substorm probabilities are best predicted from solar wind speed // J. Atmos. Solar-Terr. Phys. V. 146. P. 28–37. 2016. https://doi.org/10.1016/j.jastp.2016.04.019
  29. Phan T.D., Gosling J.T., Paschmann G., Pasma C., Drake J.F, Øieroset M., Larson D., Lin R.P., Davis M.S. The dependence of magnetic reconnection on plasma β and magnetic shear evidence from solar wind observation // Astrophys J. Lett. V. 719:L199˗L203. 2010. https://doi.org/10.1088/2041-8205/719/2/L199
  30. Pilipenko V., Kozyreva O., Hartinger M., Rastaetter L., Sakharov Y. Is the global MHD modeling of the magnetosphere adequate for GIC prediction: the May 27–28, 2017 storm // Cosmic Research. V. 61. № 2. P. 120–132. 2023. https://doi.org/10.1134/S0010952522600044
  31. Saito T. Long period irregular magnetic pulsations Pi3 // Space Sci. Rev. V. 21. P. 427‒467. 1978. https://doi.org/10.1007/BF00173068
  32. Suzuki A., Nagano H., Kim J.S. A statistical study on characteristics of high latitude Pi3 pulsations // J. Geophys. Res. V. 86. № A3. P. 1345–11354. 1981. https://doi.org/10.1029/JA086iA03p01345
  33. Tanskanen E.I., Pulkkinen T.I., Viljanen A., Mursula K., Partamies N., Slavin J.A. From space weather toward space climate time scales: Substorm analysis from 1993 to 2008 // J. Geophys. Res. V. 116. A00I34. 2011. https://doi.org/10.1029/2010JA015788
  34. Yagova N.V., Pilipenko V.A., Lanzerotti L.J., Engebretson M.J., Rodger A.S., Lepidi S., Papitashvili V.O. Two-dimensional structure of long-period pulsations at polar latitudes in Antarctica // J. Geophys. Res. V. 109. A03222. 2004. https://doi.org/10.1029/2003JA010166
  35. Wang X., Tu C.-Y., He J.-S., Wang L.-H. Ion-scale spectral break in the normal plasma beta range in the solar wind turbulence // J. Geophys. Res.: Space Physics. V. 123. P. 68–75. 2018. https://doi.org/10.1002/2017JA024813

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Typical examples of observations of Pi3 pulsations (H - component) at the observatories of the island of Heiss (9.11.1997) and Mirny (13.03.1995). Heiss (9.11.1997) and Mirny (13.03.1995). The amplitude spectra of Pi3 pulsations on the interval of their observation are shown on the right. The dynamics of the AL-index is given below.

下载 (295KB)
3. Fig. 2. Dependence of the observation frequency N of Pi3 pulsations in HIS and MIR on the maximum spectral density of wave packets Smax and its corresponding frequency f.

下载 (385KB)
4. Fig. 3. Dependence of the observation frequency N of Pi3 pulsations in HIS and MIR on the maximum intensity of substorms characterized by the AE-index value.

下载 (358KB)
5. Fig. 4. Daily variation of the observation frequency normalized by the maximum number of occurrences N/Nmax of Pi3 pulsations in HIS and MIR.

下载 (146KB)
6. Fig. 5. Frequency distribution of the occurrence frequency of N Pi3 pulsations in HIS and MIR from large-scale solar wind currents.

下载 (106KB)
7. Fig. 6. Dependence of the intermittency of Pi3 pulsations in HIS and MIR on the maximum intensity of substorms. On the left are shown the N(A) distributions of Pi3 pulsation burst amplitudes in HIS (black curve) and MIR (gray curve). On the right are the cumulative functions of the CDF distributions of Pi3 pulsation amplitudes in HIS and MIR (dark and light circles, respectively) and their approximation by the degree function (black and gray lines, respectively).

下载 (323KB)
8. Fig. 7. Dependence of Pi3 pulsation intermittency in HIS and MIR on the velocity of the slow and fast solar wind streams. The notations are the same as in Fig. 6.

下载 (316KB)
9. Fig. 8.Dependence of Pi3 pulsation intermittency in HIS and MIR on the direction of the Bx-, By-, and Bz-components of the MMP. The designations are the same as in Fig.6.

下载 (364KB)
10. Fig. 9.Dependence of Pi3 pulsation intermittency in HIS and MIR on the value of the plasma parameter β.The designations are the same as in Fig.6.

下载 (342KB)

版权所有 © Russian Academy of Sciences, 2025