Latitudinal distribution of nighttime auroral precipitation during magnetic calm and near the time of substorm onset

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The unresolved problems of the physics of auroral substorms include the issue of localization and the mechanism of the start of the substorm expansion phase. The new information needed to solve this problem can be obtained by comparing the results of observations from low-altitude spacecraft with observations in the equatorial plane of the magnetosphere. For this purpose, the morphological projection method was used, which does not require knowledge about the configuration of the magnetic field. This paper considers the latitudinal profiles of the auroral precipitation characteristics at ionospheric altitudes obtained from DMSP F7 spacecraft observations and the radial distribution of ion pressure in the equatorial plane according to the THEMIS mission during periods of magnetic calm and at time intervals close to the auroral breakup. Special attention was paid to the position of the maximum energy flux of the precipitation of ions with energy larger than 3 keV and ion pressure profiles. The average ion pressure latitudinal profiles at low altitudes were determined and compared with the average pressure distributions in the equatorial plane of the magnetosphere under similar to averaged values of solar wind and geomagnetic activity parameters. It is shown that, if under geomagnetic calm the pressure maximum at low altitudes is mapped to geocentric distances of ~7−8 Re, before the substorm onset it is mapped to a distance of ~5−6 Re. The averaged values of the pressure maxima during the magnetic calm, as well as before and after substorm onset were obtained. The brightness of the auroral luminosity in the 557.7 nm emission was estimated from DMSP F7 observations of the average energy and energy flux of the precipitated electrons.

全文:

受限制的访问

作者简介

V. Vorobjev

Polar Geophysical Institute

编辑信件的主要联系方式.
Email: vorobjev@pgia.ru
俄罗斯联邦, Apatity, Murmansk Region

O. Yagodkina

Polar Geophysical Institute

Email: oksana41@mail.ru
俄罗斯联邦, Apatity, Murmansk Region

Е. Antonova

Moscow State University; Space Research Institute, Russian Academy of Sciences

Email: elizaveta.antonova@gmail.com

Skobeltsyn Institute of Nuclear Physics

俄罗斯联邦, Moscow; Moscow

I. Kirpichev

Space Research Institute, Russian Academy of Sciences

Email: ikir@iki.rssi.ru
俄罗斯联邦, Moscow

参考

  1. Воробьев В.Г., Кириллов А.С., Катькалов Ю.В., Ягодкина О.И. Планетарное распределение интенсивности аврорального свечения, полученное с использованием модели авроральных высыпаний // Геомагнетизм и аэрономия. Т. 53. № 6. С. 757−761. 2013. https://doi.org/10.7868/S0016794013060163
  2. Деспирак И.В., Клейменова Н.Г., Любчич А.А., Малышева Л.М., Громова Л.И., Ролдугин А.В., Козелов Б.В. Магнитные суббури и сияния в полярных широтах Шпицбергена: Событие 17 декабря 2012 г. Изв. РАН. Сер. Физическая. Т. 86. № 3. С. 340−348. 2022. https://doi.org/10.31857/S0367676522030097
  3. Кирпичев И.П., Антонова Е.Е. Распределение давления плазмы в экваториальной плоскости магнитосферы Земли на геоцентрических расстояниях от 6 до 10RE по данным международного проекта THEMIS // Геомагнетизм и аэрономия. Т. 51. № 4. С. 456−461. 2011.
  4. Клейменова Н.Г., Антонова Е.Е., Козырева О.В., Малышева Л.М., Корнилова Т.А., Корнилов И.А. Волновая структура магнитных суббурь в полярных широтах // Геомагнетизм и аэрономия. Т. 52. № 6. С. 785–793. 2012.
  5. Akasofu S.-I. The development of the auroral substorm // Planet. Space Sci. V. 12. № 4. P. 273−282. 1964. https://doi.org/10.1016/0032-0633(64)90151-5
  6. Antonova E.E. The results of INTERBALL/Tail observations, the inner magnetosphere substorm onset and particle acceleration // Adv. Space Res. V. 30. № 7. P. 1671−1676. 2002. https://doi.org/10.1016/S0273-1177(02)00434-9
  7. Antonova E.E., Kirpichev I.P., Vovchenko V.V., Stepanova M.V., Riazantseva M.O., Pulinets M.S., Ovchinnikov I.L., Znatkova S.S. Characteristics of plasma ring, surrounding the Earth at geocentric distances ~7-10 RE, and magnetospheric current systems // J. Atmos. Sol.-Terr. Phy. V. 99. P. 85–91. 2013. https://doi.org/10.1016/j.jastp.2012.08.013
  8. Antonova E.E., Kirpichev I.P., Stepanova M.V. Plasma pressure distribution in the surrounding the Earth plasma ring and its role in the magnetospheric dynamics // J. Atmos. Sol.-Terr. Phy. V. 115–116. P. 32–40. 2014. https://doi.org/10.1016/j.jastp.2013.12.005
  9. Antonova E.E., Stepanova M., Kirpichev I.P., Ovchinnikov I.L, et al. Structure of magnetospheric current systems and mapping of high latitude magnetospheric regions to the ionosphere // J. Atmos. Sol.-Terr. Phy. V. 177. P. 103–114. 2018. https://doi.org/10.1016/j.jastp.2017.10.013
  10. Baker K.B., Wing S. A new magnetic coordinate system for conjugate studies at high latitudes // J. Geophys. Res. – Space. V. 94. № 7. P. 9139–9144. 1989. https://doi.org/10.1029/JA094iA07p09139
  11. Baker D.N., Pulkkinen T.I., Angelopoulos V., Baumjohann W., McPherron R.L. Neutral line model of substorms: Past results and present view // J. Geophys. Res. – Space. V. 101. № 6. P. 12975−13010. 1996. https://doi.org/10.1029/95JA03753
  12. Dubyagin S.V., Sergeev V.A., Carlson C.W., Marple S.R., Pulkkinen T.I., Yahnin A.G. Evidence of near-Earth breakup location // Geophys. Res. Lett. V. 30. № 6. ID 1282. 2003. https://doi.org/10.1029/2002GL016569
  13. Goertz C.K., Baumjohann W. On the thermodynamics of the plasma sheet // J. Geophys. Res. – Space. V. 96. № 12. P. 20991–20998. 1991. https://doi.org/10.1029/91JA02128
  14. Kim H.-J., Kim K.-C., Noh S.-J., Lyons L., Lee D.-Y., Choe W. New perspective on phase space density analysis for outer radiation belt enhancements: The influence of MeV electron injections // Geophys. Res. Lett. V. 50. № 14. ID e2023GL104614. 2023. https://doi.org/10.1029/2023GL104614
  15. Kirpichev I.P., Antonova E.E., Stepanova M., Eyelade A.V., Espinoza C.M., Ovchinnikov I.L., Vorobjev V.G., Yagodkina O.I. Ion kappa distribution parameters in the magnetosphere of the Earth at geocentric distances smaller than 20 RE during quiet geomagnetic conditions // J. Geophys. Res. – Space. V. 126. № 10. ID e2021JA029409. 2021. https://doi.org/10.1029/2021JA029409
  16. Lui A.T.Y. Current disruption in the Earth’s magnetosphere: Observations and models // J. Geophys. Res. – Space. V. 101. № 6. P. 13067−13088. 1996. https://doi.org/10.1029/96JA00079
  17. Mende S.B., Carlson C.W., Frey H.U., Peticolas L.M., Østgaard N. FAST and IMAGE-FUV observations of a substorm onset // J. Geophys. Res. – Space. V. 108. № 9. ID 1344. 2003. https://doi.org/10.1029/2002JA009787
  18. Newell P.T., Feldstein Ya.I., Galperin Y.I., Meng S.-I. The morphology of nightside precipitation // J. Geophys. Res. – Space. V. 101. № 5. P. 10737−10748. 1996. https://doi.org/10.1029/95JA03516
  19. Newell P.T., Sergeev V.A., Bikkuzina G.R., Wing S. Characterizing the state of the magnetosphere: Testing the ion precipitation maxima latitude (b2i) and the ion isotropy boundary // J. Geophys. Res. – Space. V. 103. № 3. P. 4739−4745. 1998. https://doi.org/10.1029/97JA03622
  20. Nosé M., Keika K., Kletzing C.A., Spence H.E., Smith C.W., MacDowall R.J., Reeves G.D., Larsen B.A., Mitchell D.G. Van Allen Probes observations of magnetic field dipolarization and its associated O+ flux variations in the inner magnetosphere at L < 6.6 // J. Geophys. Res. – Space. V. 121. № 8. P. 7572–7589. 2016. https://doi.org/10.1002/2016JA022549
  21. Nosé M., Matsuoka A., Kasahara S., et al. Magnetic field depolarization and its associated ion flux variations in the dawnside deep inner magnetosphere: Arase observations // Geophys. Res. Lett. V. 45. № 16. P. 7942–7950. 2018. https://doi.org/10.1029/2018GL078825
  22. Persson M.A.L., Opgenoorth H.J., Pulkkinen T.I., et al. Near-earth substorm onset: A coordinated study // Geophys. Res. Lett. V. 21. № 17. P. 1875−1878. 1994. https://doi.org/10.1029/94GL01426
  23. Paschmann G., Haaland S., Treumann R. Auroral plasma physics // Space Sci. Rev. V. 103. № 1–4. P. 1–485. 2002. https://doi.org/10.1023/A:1023030716698
  24. Roach F.E., Jamnick P.M. The sky and eye // Sky and Telescope. V. 17. P. 164–168. 1958.
  25. Stepanova M.V., Antonova E.E., Bosqued J.M., Kovrazhkin R.A., Aubel K.R. Asymmetry of auroral electron precipitations and its relationship to the substorm expansion phase onset // J. Geophys. Res. – Space. V. 107. № 7. ID 1134. 2002. https://doi.org/10.1029/2001JA003503
  26. Stepanova M., Antonova E.E., Bosqued J.-M. Study of plasma pressure distribution in the inner magnetosphere using low-altitude satellites and its importance for the large-scale magnetospheric dynamics // Adv. Space Res. V. 38. № 8. P. 1631−1636. 2006. https://doi.org/10.1016/j.asr.2006.05.013
  27. Tsyganenko N.A. A magnetospheric magnetic field model with a warped tail current sheet // Planet. Space Sci. V. 37. № 1. P. 5−20. 1989. https://doi.org/10.1016/0032-0633(89)90066-4
  28. Vorobjev V.G., Yagodkina O.I., Starkov G.V., Feldstein Ya.I. A substorm in midnight auroral precipitation // Ann. Geophys. V. 21. № 12. P. 2271–2280. 2003. https://doi.org/10.5194/angeo-21-2271-2003
  29. Vorobjev V.G., Antonova E.E., Yagodkina O.I. How the intensity of isolated substorms is controlled by the solar wind parameters // Earth Planets Space. V. 70. № 1. ID 148. 2018. https://doi.org/10.1186/s40623-018-0922-5
  30. Vorobjev V.G., Yagodkina O.I., Antonova E.E. Ionospheric features of polar cusp dayside precipitation under a northern IMF // Geomagn. Aeronomy. V. 64. № 3. P. 302–312. 2024. https://doi.org/10.1134/S0016793224600103
  31. Wing S., Newell P.T. Center plasma sheet ion properties as inferred from ionospheric observations // J. Geophys. Res. – Space. V. 103. № A4. P. 6785−6800. 1998. https://doi.org/10.1029/97JA02994

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Variations of the interplanetary medium parameters and geomagnetic activity levels on October 08, 1986 in the interval 01:00-05:00 UT. From top to bottom are shown: variations of the Bz-component of the MMP and the dynamic pressure of the solar wind, variations of the AL-, SYM/H- and PC-indices of magnetic activity. The MMP and solar wind data are given in terms of the frontal point of the shock front. The transit time of the F7 satellite is indicated by the vertical dashed line.

下载 (269KB)
3. Fig. 2. Integral characteristics of the ejected particles from the F7 satellite observations on October 08, 1986 at 03:09-03:10 UT: (a)-the mean energies (Ei, keV) and energy fluxes (Fi, erg/cm2 s) of the ejected ions, (b)-the mean energies (Ee, keV) and energy fluxes (Fe, erg/cm2 s) of the ejected electrons. The corrected geomagnetic latitude (CGL) is plotted along the horizontal axis. Vertical dashed lines are the position of the b2i boundary.

下载 (236KB)
4. Fig. 3. Latitudinal profiles of ion pressure (a) and 557.7 nm emission luminosity (b) calculated from the data of Figs. 2a and 2b, respectively. Vertical dashed lines are the position of the b2i boundary.

下载 (117KB)
5. Fig. 4. Latitudinal mean ion pressure profiles, Pi (nPa): (a) - magnetically calm period, (b) - final stage of the substorm nucleation phase, (c) - initial stage of the substorm development phase. Vertical dashed lines are the average position of b2i.

下载 (175KB)
6. Fig. 5.Latitudinal mean profiles of the luminosity intensity of the 557.7 nm, I5577 (kR) emission. Panels (a-b) correspond to panels (a-c) in Fig.4.Vertical dashed lines are the average position of b2i.

下载 (195KB)
7. Fig. 6.Radial distribution of ion pressure in the pre-midnight sector of the Earth's magnetosphere during magnetically quiet periods at positive (a) and negative (b) polarity of the vertical component of the MMP.

下载 (105KB)
8. Fig. 7.Projection of the latitudinal ion pressure profile in the ionosphere into the equatorial plane of the magnetosphere (thin curve) and its comparison with observations in the equatorial plane (curve with dots). The upper panel is the magnetically quiet period; the lower panel is the final stage of the substorm nucleation phase.

下载 (142KB)

版权所有 © Russian Academy of Sciences, 2025