Тренды вертикальной составляющей потока волновой активности в Северном полушарии

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

По данным глобального реанализа атмосферы JRA-55 изучаются долговременные тренды трехмерного потока волновой активности Пламба. Вертикальная компонента потока Пламба характеризует распространение атмосферных планетарных волн, генерируемых в тропосфере, в верхние слои атмосферы и используется для анализа стратосферно-тропосферного динамического взаимодействия. Исследование потока волновой активности проводилось для трех широтных секторов Северного полушария для месяцев с декабря по март, за 64-летний период с 1958 г. Показано, что в январе и марте над Дальним Востоком России наблюдается статистически значимый тренд на увеличение потока волновой активности из тропосферы в стратосферу, что может способствовать возрастанию частоты формирования волн холода в тропосфере средних широт. Исследование стратосферно-тропосферного динамического взаимодействия в целом и потоков волновой активности в частности необходимо для решения задач, связанных как с глобальными и региональными климатическими изменениями, так и с перемешиванием долгоживущих атмосферных компонент.

Полный текст

Доступ закрыт

Об авторах

К. А. Диденко

Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН; Санкт-Петербургский государственный университет

Автор, ответственный за переписку.
Email: didenko@izmiran.ru
Россия, Троицк; Санкт-Петербург

Т. С. Ермакова

Санкт-Петербургский государственный университет; Российский государственный гидрометеорологический университет

Email: taalika@mail.ru
Россия, Санкт-Петербург; Санкт-Петербург

А. В. Коваль

Санкт-Петербургский государственный университет

Email: a.v.koval@spbu.ru
Россия, Санкт-Петербург

Е. Н. Савенкова

Российский государственный гидрометеорологический университет

Email: savenkova.en@mail.ru
Россия, Санкт-Петербург

Список литературы

  1. Варгин П.Н., Володин Е.М., Карпечко А.Ю., Погорельцев А.И. О стратосферно-тропосферных взаимодействиях // Вестник РАН. Т. 85. № 1. С. 39–46. 2015. https://doi.org/10.7868/S0869587315010181
  2. Гечайте И., Погорельцев А.И., Угрюмов А.И. Волновое взаимодействие стратосфера-тропосфера как предвестник аномальных похолоданий восточной части Балтийского региона // Ученые записки РГММУ. № 43. С. 129–139. 2016.
  3. Погорельцев А.И., Савенкова Е.Н., Перцев Н.Н. Внезапные стратосферные потепления: роль нормальных атмосферных мод // Геомагнетизм и аэрономия. Т. 54. № 3. С. 387–403. 2014. https://doi.org/10.7868/S0016794014020163
  4. Смышляев С.П., Погорельцев А.И., Галин В.Я., Дробашевская Е.А. Влияние волновой активности на газовый состав стратосферы полярных районов // Геомагнетизм и аэрономия. Т. 56. № 1. С. 102–116. 2016. https://doi.org/10.7868/S0016794015060152
  5. Andrews D.G., McIntyre M.E. Planetary waves in horizontal and vertical shear: the generalized Eliassen-Palm relation and the mean zonal acceleration // J. Atmos. Sci. V. 33. N 11. Р. 2031–2048. 1976. https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2
  6. Baldwin M., Birner T., Brasseur G., et al. 100 years of progress in understanding the stratosphere and mesosphere // Meteor. Mon. V. 59. N 27. P. 27.1–27.62. 2019. https://doi.org/10.1175/AMSMONOGRAPHS-D-19-0003.1
  7. Baldwin M., Dunkerton T. Stratospheric harbingers of anomalous weather regimes // Science. V. 294. N 5542. Р. 581–584. 2001. https://doi.org/10.1126/science.10633
  8. Chan C.J., Plumb R.A. The response to stratospheric forcing and its dependence on the state of the troposphere // J. Atmos. Sci. V. 66. N 7. Р. 2107–2115. 2009. https://doi.org/10.1175/2009JAS2937.1
  9. Charney J., Drazin P. Propagation of planetary-scale disturbances from the lower into the upper atmosphere // J. Geophys. Res. V. 66. N 1. Р. 83–109. 1961. https://doi.org/10.1029/JZ066i001p00083
  10. Chen P., Robinson W. Propagation of planetary waves between the troposphere and stratosphere // J. Atmos. Sci. V. 49. N 24. Р. 2533–2545. 1992. https://doi.org/10.1175/1520-0469(1992)049<2533:POPWBT>2.0.CO;2
  11. Cullens С.Y., Thurairajah B. Gravity wave variations and contributions to stratospheric sudden warming using long-term ERA5 model output // J. Atmos. Sol.-Terr. Phy. V. 219. ID 105632. 2021. https://doi.org/10.1016/j.jastp.2021.105632
  12. Gečaitė I. Climatology of three-dimensional Eliassen-Palm wave activity fluxes in the Northern Hemisphere stratosphere from 1981 to 2020 // Climate. V. 9. N 8. ID 124. 2021. https://doi.org/10.3390/cli9080124
  13. Gelaro R., McCarty W., Suarez M. J. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2) // J. Climate. V. 30. N 14. Р. 5419–5454. 2017. https://doi.org/10.1175/JCLI-D-16-0758.1
  14. Haynes P.H., McIntyre M.E., Shepherd T.G., Marks C.J., Shine K.P. On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces // J. Atmos. Sci. V. 48. N 4. P. 651–678. 1991. https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2
  15. Haigh J.D., Blackburn M. Solar influences on dynamical coupling between the stratosphere and troposphere // Space Sci. Rev. V. 125. N 1–4. P. 331–344. 2006. https://doi.org/10.1007/978-0-387-48341-2_26
  16. Haigh J.D., Blackburn M., Day R. The response of tropospheric circulation to perturbations in lower stratospheric temperature // J. Climate. V. 18. N 17. P. 3672–3691. 2005. https://doi.org/10.1175/JCLI3472.1
  17. Huang J., Hitchcock P., Maycock A.C. et al. Northern hemisphere cold air outbreaks are more likely to be severe during weak polar vortex conditions // Communications Earth & Environment. V. 2. ID 147. 2021. https://doi.org/10.1038/s43247-021-00215-6
  18. Jadin E.A., Wei K., Zyulyaeva Y.A., Chen W., Wang L. Stratospheric wave activity and the Pacific Decadal Oscillation // J. Atmos. Sol.-Terr. Phy. V. 72. N 16. P. 1163–1170. 2010. https://doi.org/10.1016/j.jastp.2010.07.009
  19. Karpechko A., Charlton-Perez A., Balmaseda M., Tyrrell N., Vitar F. Predicting sudden stratospheric warming 2018 and its climate impacts with a multimodel ensemble // Geophys. Res. Lett. V. 45. N 24. P. 13538–13546. 2018. https://doi.org/10.1029/2018GL081091
  20. Kobayashi Sh., Ota Y., Harada Y. et al. The JRA-55 reanalysis: general specifications and basic characteristics // J. Meteorol. Soc. Jpn. V. 93. N 1. P. 5–48. 2015. https://doi.org/10.2151/jmsj.2015-001
  21. Kolstad E., Breiteig T., Scaife A. The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere // Q. J. R. Meteor. Soc. V. 136. N 649. Р. 886–893. 2010. https://doi.org/10.1002/qj.620
  22. Koval A.V., Didenko K.A., Ermakova T.S., Gavrilov N.M., Kandieva K.K. Simulation of changes in the meridional circulation of the middle and upper atmosphere during transitional QBO phases / 28th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. Tomsk, July 4–8, 2022. Proc. SPIE. V. 12341. ID 1234170. 2022а. https://doi.org/10.1117/12.2643046
  23. Koval A.V., Gavrilov N.M., Kandieva K.K. Ermakova T.S., Didenko K.A. Numerical simulation of stratospheric QBO impact on the planetary waves up to the thermosphere // Scientific Reports. V. 12. ID 21701. 2022b. https://doi.org/10.1038/s41598-022-26311-x
  24. Koval A.V., Toptunova O.N., Motsakov M.A., Didenko K.A., Ermakova T.S., Gavrilov N.M., Rozanov E.V. Numerical modeling of relative contribution of planetary waves to the atmospheric circulation // Atmos. Chem. Phys. V. 23. N 7. P. 4105–4114. 2023. https://doi.org/10.5194/acp-23-4105-2023
  25. Liu H.L., Talaat E.R., Roble R.G., Lieberman R.S., Riggin D.M., Yee J.H. The 6.5-day wave and its seasonal variability in the middle and upper atmosphere // J. Geophys. Res. – Atmos. V. 109. N 21. ID D21112. 2004. https://doi.org/10.1029/2004jd004795
  26. Plumb R.A. On the Three-Dimensional Propagation of stationary waves // J. Atmos. Sci. V. 42. N 3. P. 217–229. 1985. https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2
  27. Pogoreltsev A.I., Kanukhina A.Yu., Suvorova E.V., Savenkova E.N. Variability of planetary waves as a signature of possible climatic changes // J. Atmos. Sol.-Terr. Phy. V. 71. N 14–15. P. 1529–1539. 2009. https://doi.org/10.1016/j.jastp.2009.05.011
  28. Polvani L.M., Waugh D.W. Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes // J. Climate. V. 17. N 18. P. 3548–3554. 2004. https://doi.org/10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2
  29. Rakushina E.V., Ermakova T.S., Pogoreltsev A.I. Changes in the zonal mean flow, temperature, and planetary waves observed in the Northern Hemisphere mid-winter months during the last decades // J. Atmos. Sol.-Terr. Phy. V. 171. P. 234–240. 2018. https://doi.org/10.1016/j.jastp.2017.08.005
  30. Reichler T., Kushner P.J., Polvani L.M. The coupled stratosphere–troposphere response to impulsive forcing from the troposphere // J. Atmos. Sci. V. 62. N 9. P. 3337–3352. 2005. https://doi.org/10.1175/JAS3527.1
  31. Robock A. Stratospheric forcing needed for dynamical seasonal prediction // B. Am. Meteorol. Soc. V. 82. N 10. P. 2189–2192. 2001. https://doi.org/10.1175/1520-0477(2001)082<2189:SFNFDS>2.3.CO;2
  32. Scott R., Polvani L. Internal variability of the winter stratosphere // J. Atmos. Sci. V. 63. N 11. P. 2758–2776. 2006. https://doi.org/10.1175/JAS3797.1
  33. Solomon S., Rosenlof K.H., Portmann R.W., Daniel J.S., Davis S.M., Sanford T.J., Plattner G.K. Contributions of stratospheric water vapor to decadal changes in the rate of global warming // Science. V. 327. N 5970. P. 1219–1223. 2010. https://doi.org/10.1126/science.1182488
  34. Thompson D.W.J., Furtado J.C., Shepherd T.G. On the tropospheric response to anomalous stratospheric wave drag and radiative heating // J. Atmos. Sci. V. 63. N 10. P. 2616–2629. 2006. https://doi.org/10.1175/JAS3771.1
  35. Tomassini L., Gerber E.P., Baldwin M.P., Bunzel F., Giorgetta M. The role of stratosphere-troposphere coupling in the occurrence of extreme winter cold spells over northern Europe // J. Adv. Model. Earth Sy. V. 4. N 4. ID M00A03. 2012. https://doi.org/10.1029/2012MS000177
  36. Vargin P.N., Koval A.V., Guryanov V.V. Arctic stratosphere dynamical processes in the winter 2021–2022 // Atmosphere. V. 13. N 10. ID 1550. 2022. https://doi.org/10.3390/atmos13101550
  37. Wei K., Ma J., Chen W., Vargin P.N. Longitudinal peculiarities of planetary waves-zonal flow interactions and their role in stratosphere-troposphere dynamical coupling // Clim. Dynam. V. 57. N 9–10. P. 2843–2862. 2021. https://doi.org/10.1007/s00382-021-05842-5
  38. Zyulyaeva Yu.A., Zhadin E.A. Analysis of three-dimensional Eliassen-Palm fluxes in the lower stratosphere // Russ. Meteorol. Hydrol. V. 34. N 8. P. 483–490. 2009. https://doi.org/10.3103/S1068373909080019

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Вертикальная составляющая трехмерного потока волновой активности (м2/с2), усреднeнная за 64 года (1958−2021 гг.): (а) – декабрь, (б) – январь, (в) – февраль, (г) – март, высота 20 км. Данные JRA-55.

Скачать (474KB)
3. Рис. 2. Вертикальная составляющая трехмерного потока волновой активности (м2/с2), усреднeнная за 10 лет (2008−2017 гг.): (а) – декабрь, (б) – январь, (в) – февраль, (г) – март, высота 20 км. Данные JRA-55.

Скачать (422KB)
4. Рис. 3. Временная изменчивость вертикальной составляющей потока волновой активности за 64 года (1958−2021 гг.) для декабря на уровне 20 км, усредненной для: (а) – I сектора, (б) – II сектора, (в) – III сектора в полосе 37.5−77.5° N. Данные JRA-55.

Скачать (295KB)
5. Рис. 4. Временная изменчивость вертикальной составляющей потока волновой активности за 1980−2021 гг. для декабря на уровне 20 км, усредненной для: (а) – I сектора, (б) – II сектора, (в) – III сектора в полосе 37.5–77.5° N. Данные JRA-55.

Скачать (225KB)
6. Рис. 5. Временная изменчивость вертикальной составляющей потока волновой активности за 64 года (1958−2021 гг.) для января на уровне 20 км, усредненной для: (а) – I сектора, (б) – II сектора, (в) – III сектора в полосе 37.5−77.5° N. Данные JRA-55.

Скачать (228KB)
7. Рис. 6. Временная изменчивость вертикальной составляющей потока волновой активности за 64 года (1958−2021 гг.) для февраля на уровне 20 км, усредненной для: (а) – I сектора, (б) – II сектора, (в) – III сектора в полосе 37.5−77.5° N. Данные JRA-55.

Скачать (230KB)
8. Рис. 7. Временная изменчивость вертикальной составляющей потока волновой активности за 64 года (1958−2021 гг.) для марта на уровне 20 км, усредненной для: (а) – I сектора, (б) – II сектора, (в) – III сектора в полосе 37.5−77.5° N. Данные JRA-55.

Скачать (234KB)

© Российская академия наук, 2024