Вероятность наблюдения экваториальных плазменных пузырей в зависимости от месяца года

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследованы вариации вероятности наблюдения экваториальных плазменных пузырей в зависимости от месяца года. Для этого использованы данные, полученные на борту спутника ISS-b (~972–1220 км) в районе средних широт ±(25°–55°) DIPLAT обоих полушарий за полтора года наблюдений (август 1978–декабрь 1979 гг.). Проведен сравнительный анализ исследуемой характеристики с месячными вариациями скорости меридионального ветра. Для этого привлечены данные о скорости ветра, рассчитанные по модели горизонтальных ветров HWM14. 1. Выявлено, что максимальные значения вероятности наблюдения плазменных пузырей каждый раз достигаются в период местной зимы: в декабре–феврале в Cеверном полушарии (~19%), в июне–августе в Южном полушарии (~29%). Минимальные значения достигаются местным летом: в июне–августе в Северном полушарии (~3%), в декабре–феврале в Южном полушарии (~4%). Как результат, в периоды солнцестояний имеет место асимметричное развитие пузырей относительно геомагнитного экватора. 2. Выявлено, что относительное равенство значений вероятности на гистограммах разных полушарий достигается в периоды равноденствий. Как результат, в эти периоды имеет место почти симметричное “расплывание” пузырей относительно экватора. 3. Выявлено, что максимальные значения вероятности наблюдения плазменных пузырей в каждом полушарии достигаются в период местной зимы, когда там развиваются меридиональные ветры, способствующие опусканию плазмы пузыря и, соответственно, “расплыванию” пузыря вдоль силовой трубки. Минимальные значения вероятности в каждом полушарии достигаются в сезон местного лета, когда развивающийся там меридиональный ветер благоприятствует подъему плазмы пузыря и тормозит его “расплывание”.

Об авторах

Л. Н. Сидорова

Институт земного магнетизма, ионосферы и распространения радиоволн
им. Н.В. Пушкова РАН (ИЗМИРАН)

Автор, ответственный за переписку.
Email: lsid@izmiran.ru
Россия, Москва, Троицк

Список литературы

  1. − Брюнелли Б.Е., Намгаладзе А.А. Физика ионосферы. М.: Наука. 499 с. 1998.
  2. − Сидорова Л.Н., Филиппов С.В. Долготная статистика плазменных “пузырей”, видимых на высотах верхней ионосферы в концентрации Не+ // Геомагнетизм и аэрономия. Т. 53. № 1. С. 64–77. 2013.
  3. − Сидорова Л.Н., Филиппов С.В. Регистрация плазменных “пузырей” на высотах верхней ионосферы: численные оценки // Геомагнетизм и аэрономия. Т. 54. № 3. С. 355–364. 2014.
  4. − Сидорова Л.Н. Экваториальные плазменные “пузыри”: Изменчивость широтного распределения с высотой // Геомагнетизм и аэрономия. Т. 61. № 4. С. 445–456. 2021. https://doi.org/10.31857/S0016794021040167
  5. − Сидорова Л.Н. Экваториальные плазменные пузыри: Влияние термосферных меридиональных ветров // Геомагнетизм и аэрономия. Т. 62. № 3. С. 374–382. 2022. https://doi.org/10.31857/S0016794022030166
  6. − Abdu M.A. Outstanding problems in the equatorial ionosphere-thermosphere electrodynamics relevant to spread F // J. Atmos. Terr. Phys. V. 63. № 9. P. 869–884. 2001.
  7. − Barros D., Takahashi H., Wrasse C.M. et al. Asymmetric development of equatorial plasma bubbles observed at geomagnetically conjugate points over the Brazilian sector // J. Geophys. Res. V. 127. № 6. e2021JA030250. 2022. https://doi.org/10.1029/2021JA030250
  8. − Comberiate J., Paxton L.J. Coordinated UV imaging of equatorial plasma bubbles using TIMED/GUVI and DMSP/ SSUSI // Space Weather. V. 8. S10002. 2010. https://doi.org/10.1029/2009SW000546
  9. − Devasia C.V., Jyoti N., Subbaro K. S. V. et al. On the plausible leakage of thermospheric meridional winds with equatorial spread F // J. Atmos. Sol. Terr. Phy. V. 64. № 1. 2002.
  10. − Drob D.P., Emmert J.T., Meriwether J.W. et al. An Update to the Horizontal Wind Model (HWM): The Quiet Time Thermosphere // Earth and Space Science. V. 2. № 7. P. 301–319. 2015. https://doi.org/10.1002/2014EA000089
  11. − Gasperini F., Forbes J.M., Doornbos E.N. et al. Synthetic thermosphere winds based on CHAMP neutral and plasma density measurements // J. Geophys. Res. V. 121. № 4. P. 3699–3721. 2016. https://doi.org/10.1002/2016JA022392
  12. − Huang C.S., Kelley M.C. Nonlinear evolution of equatorial spread F: 3. Plasma bubbles generated by structured electric fields // J. Geophys. Res. V. 101. P. 303–313. 1996.
  13. − Huba J.D., Krall J. Impact of meridional winds on equatorial spread F: Revisited // Geophys. Res. Lett. V. 40. P. 1268–1272. 2013. https://doi.org/10.1002/grl.50292
  14. − Jyoti N., Devasia C. V., Sridharan R. et al. Threshold height (h’F)c for the meridional wind to play a deterministic role in the bottom side equatorial spread F and its dependence on solar activity // Geophys. Res. Lett. V. 31. L12809. 2004. https://doi.org/10.1029/2004GL019455
  15. − Kelley M.C. Ionosphere / Encyclopedia of Atmospheric Science. Eds. James R. Holton, John A. Pyle and Judith A. Curry. London: Academic Press, Elsevier Science. 1022 p. 2002.
  16. − Kil H., Paxton L.J., Oh S.-J. Global bubble distribution seen from ROCSAT-1 and its association with the pre-reversal enhancement // J. Geophys. Res. V. 114. № A06307. 2009. https://doi.org/10.1029/2008JA013672
  17. − Krall J., Huba J.D., Joyce G. et al. Three-dimensional simulation of equatorial spread-f with meridional wind effects // Ann. Geophysicae. V. 27. № 5. P. 1821–1830. 2009.
  18. − Krall J., Huba J.D., Joyce G. et al. Simulation of the seeding of equatorial spread-f by circular gravity waves // Geophys. Res. Lett. V. 40. P. 1–5. 2013.
  19. − Maruyama T. A diagnostic model for equatorial spread F. 1. Model description and application to electric field and neutral wind effects // J. Geophys. Res. V. 93. P. 14.611–14.622. 1988.
  20. − Maruyama T., Saito S., Kawamura M. et al. Equinoctial asymmetry of a low-latitude ionosphere-thermosphere system and equatorial irregularities: evidence for meridional wind control // Ann. Geophysicae. V. 27. P. 2027–2034. 2009. https://doi.org/10.5194/angeo-27-2027-2009
  21. − Mendillo M., Meriwether J., Biondi M. Testing the thermospheric neutral wind suppression mechanism for day-to-day variability of equatorial spread F // J. Geophys. Res. V. 106. № A3. P. 3655–3663. 2001.
  22. − Otsuka Y., Shiokawa K., Ogawa T. et al. Geomagnetic conjugate observations of equatorial airglow depletions // Geophys. Res. Lett. V. 29. № 15. P. 43-1–43-4. 2002. https://doi.org/10.1029/2002GL015347
  23. − Rodriguez–Zuluaga J., Stolle C. Interhemispheric field-aligned currents at the edges of equatorial plasma depletions // SCI REP V. 9. № 1. P. 1–8. 2019.
  24. − RRL. Summary Plots of Ionospheric Parameters obtained from Ionosphere Sounding Satellite-b. Tokyo: Radio Research Laboratories Ministry of Posts and Telecommunications. V. 1–3. 1983.
  25. − RRL. Summary Plots of Ionospheric Parameters obtained from Ionosphere Sounding Satellite-b. Tokyo: Radio Research Laboratories Ministry of Posts and Telecommunications. Special Report. V. 4. 1985.
  26. − Sau S., Narayanan V., Gurubaran S. et al. First observation of interhemispheric asymmetry in the EPBs during the St. Patrick’s Day geomagnetic storm of 2015 // J. Geophys. Res.–Space. V. 122. № 6. P. 6679–6688. 2017.
  27. − Sobral J., Abdu M., Pedersen T. et al. Ionospheric zonal velocities at conjugate points over Brazil during the COPEX campaign: Experimental observations and theoretical validations // J. Geophys. Res. V. 114. № A04309. P. 1–24. 2009. https://doi.org/10.1029/2008JA013896
  28. − Sidorova L.N., Filippov S.V. Topside ionosphere He+ density depletions: seasonal/longitudinal occurrence probability // J. Atmos. Sol. Terr. Phy. V. 86. P. 83–91. 2012. https://doi.org/10.1016/j.jastp.2012.06.013
  29. − Sidorova L.N., Filippov S.V. Plasma bubbles in the topside ionosphere: estimations of the survival possibilities // J. Atmos. Sol. Terr. Phy. V. 119. P. 35–41. 2014. https://doi.org/10.1016/j.jastp.2014.06.013
  30. − Su S.-Y., Liu C.H., Ho H.H. et al. Distribution characteristics of topside ionospheric density irregularities: Equatorial versus midlatitude regions // J. Geophys. Res. V. 111. № A06305. 2006. https://doi.org/10.1029/2005JA011330
  31. − Tsunoda R.T., Livingston R.C., McClure J.P. et al. Equatorial plasma bubbles: vertical elongated wedges from the bottomside F layer // J. Geophys. Res. V. 87. P. 9171–9180. 1982.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (178KB)
3.

Скачать (183KB)

© Л.Н. Сидорова, 2023