Simulation of spectral observations of an eruptive prominence

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper presents the results of an analysis of observations of an eruptive prominence on the MFS and HSFA2 spectrographs of the Ondřejov Observatory (Astronomical Institute, Czech Republic) in the lines of hydrogen, helium and calcium. After processing the spectra, the integral radiation fluxes in the lines were determined and a theoretical calculation of the physical parameters of the plasma was carried out using a model in the absence of local thermodynamic equilibrium. A comparison of the observed and calculated values showed that the observed radiation fluxes in the lines can be explained in a model of stationary gas radiation taking into account the opacity in the spectral lines. To calculate theoretical fluxes, in some cases it was necessary to introduce radiation from several layers with different temperatures and heights. The calculated radiation fluxes agree with the observed ones with an accuracy of 10%. As a result of the simulation, the main parameters of the prominence plasma were obtained: temperature, concentration, etc. The values of radiation fluxes in the spectral lines indicate the inhomogeneity of the emitting gas, and there may be regions next to each other whose temperatures differ by an order of magnitude.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Yu. Kupryakov

ASCR; Moscow State University

Email: jurij.kupriakov@asu.cas.cz

Astronomical Institute, Sternberg Astronomical Institute

Чехия, Ondřejov; Russia, Moscow

K. Bychkov

Moscow State University

Email: bychkov@sai.msu.ru

Sternberg Astronomical Institute

Ресей, Moscow

O. Belova

Moscow State University

Email: whitecanvas05122010@mail.ru

Sternberg Astronomical Institute

Ресей, Moscow

A. Gorshkov

Moscow State University

Email: gorshkov@sai.msu.ru

Sternberg Astronomical Institute

Ресей, Moscow

P. Kotrč

ASCR

Хат алмасуға жауапты Автор.
Email: pavel.kotrc@asu.cas.cz

Astronomical Institute

Чехия, Ondřejov

Әдебиет тізімі

  1. Белова О.М., Бычков К.В. Устойчивость нестационарного охлаждения чисто водородного газа относительно числа учитываемых дискретных уровней // Астрофизика. Т. 61. № 1. C. 119–130. 2018.
  2. Биберман Л.М. К теории диффузии резонансного излучения // ЖЭТФ. Т. 17. С. 416. 1947.
  3. Биберман Л.М., Воробьёв В.С., Якубов И.Т. Кинетика неравновесной низкотемпературной плазмы. М.: Наука, 378 с. 1982.
  4. Вайнштейн Л.А., Собельман И.И., Юков Е.А. Сечения возбуждения атомов и ионов электронами. М.: Наука, 142 с. 1973.
  5. Anzer U., Heinzel P. Prominence Parameters Derived from Magnetic-Field Measurements and NLTE Diagnostics // Sol. Phys. V. 179. № 1. P. 75–87. 1998. https://doi.org/10.1023/A:1005000616138
  6. Holstein T. Imprisonment of resonance radiation in gases // Phys. Rev. V. 72. P. 1212—1233. 1947. https://doi.org/10.1103/PhysRev.72.1212
  7. Holstein T. Imprisonment of resonance radiation in gases. II // Phys. Rev. V. 83. P. 1159—1168. 1951. https://doi.org/10.1103/PhysRev.83.1159
  8. Johnson L.C. Approximations for collisional and radiative transition rates in atomic hydrogen // ApJ. V. 174. P. 227—236. 1972. https://doi.org/10.1086/151486
  9. Kotrč P., Bárta M., Schwartz P., Kupryakov Y.A., Kashapova L.K., Karlický M. Modeling of H-alpha Eruptive Events Observed at the Solar Limb // Sol. Phys. V. 284. № 2. P. 447—466. 2013. https://doi.org/10.1007/s11207-012-0167-6
  10. Labrosse N., Heinzel P., Vial J.-C., et al. Physics of Solar Prominences: I-Spectral Diagnostics and Non-LTE Modelling // Space Sci. Rev. V. 151. P. 243—332. 2010. https://doi.org/10.1007/s11214-010-9630-6
  11. Melendez M., Bautista M.A., Badnell N.R. Atomic data from the IRON project LXIV. Radiative transition rates and collision strengths for Ca II // A&A. V. 469. P. 1203—1209. 2007. https://doi.org/10.1051/0004-6361:20077262
  12. Schwartz P., Balthasar H., Kuckein C., et al. NLTE modeling of a small active region filament observed with the VTT // Astron. Nachr. V. 337. № 10. P. 1045—1049. 2016. https://doi.org/10.1002/asna.201612431
  13. Schwartz P., Gunár S., Jenkins J.M., et al. 2D non-LTE modelling of a filament observed in the Hα line with the DST/IBIS spectropolarimeter // A&A. V. 631. P. A146 (12P). 2019.
  14. Seaton M.J. The spectrum of the solar corona // Planetary and Space Science. V. 12. № 1. P. 55—74. 1964.
  15. Vial J.-C., Engvold O. (eds) Solar Prominences. Astrophys. Space Sci. Lib. V. 415. 498 p. 2018. https://doi.org/10.1007/978-3-319-10416-4

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Hα spectrum at 13:21:11 UT (left). The numbers correspond to photometric sections. Below is the speed scale. In the center is the image on the slit in the Hα line. On the right is an image of SDO 304 Å with the spectrograph slit position and Doppler velocity components marked.

Жүктеу (176KB)
3. Fig. 2. Filtergram and spectrum in the Hα line at 13:27:40 UT.

Жүктеу (115KB)
4. Fig. 3. Radiation flux (shaded area) in the Hα line at 13:27:40 UT.

Жүктеу (170KB)

© Russian Academy of Sciences, 2024